Bayesian variable selection and estimation in semiparametric joint models of multivariate longitudinal and survival data
被引:15
|
作者:
Tang, An-Min
论文数: 0引用数: 0
h-index: 0
机构:
Yunnan Univ, Dept Stat, Kunming 650091, Peoples R ChinaYunnan Univ, Dept Stat, Kunming 650091, Peoples R China
Tang, An-Min
[1
]
Zhao, Xingqiu
论文数: 0引用数: 0
h-index: 0
机构:
Hong Kong Polytech Univ, Dept Appl Math, Hong Kong, Hong Kong, Peoples R China
Hong Kong Polytech Univ, Shenzhen Res Inst, Shenzhen 518057, Peoples R ChinaYunnan Univ, Dept Stat, Kunming 650091, Peoples R China
Zhao, Xingqiu
[2
,3
]
Tang, Nian-Sheng
论文数: 0引用数: 0
h-index: 0
机构:
Yunnan Univ, Dept Stat, Kunming 650091, Peoples R ChinaYunnan Univ, Dept Stat, Kunming 650091, Peoples R China
Tang, Nian-Sheng
[1
]
机构:
[1] Yunnan Univ, Dept Stat, Kunming 650091, Peoples R China
[2] Hong Kong Polytech Univ, Dept Appl Math, Hong Kong, Hong Kong, Peoples R China
[3] Hong Kong Polytech Univ, Shenzhen Res Inst, Shenzhen 518057, Peoples R China
This paper presents a novel semiparametric joint model for multivariate longitudinal and survival data (SJMLS) by relaxing the normality assumption of the longitudinal outcomes, leaving the baseline hazard functions unspecified and allowing the history of the longitudinal response having an effect on the risk of dropout. Using Bayesian penalized splines to approximate the unspecified baseline hazard function and combining the Gibbs sampler and the Metropolis-Hastings algorithm, we propose a Bayesian Lasso (BLasso) method to simultaneously estimate unknown parameters and select important covariates in SJMLS. Simulation studies are conducted to investigate the finite sample performance of the proposed techniques. An example from the International BreastCancer Study Group (IBCSG) is used to illustrate the proposed methodologies.
机构:
Yunnan Univ, Yunnan Key Lab Stat Modeling & Data Anal, Kunming 650091, Peoples R ChinaYunnan Univ, Yunnan Key Lab Stat Modeling & Data Anal, Kunming 650091, Peoples R China
Tang, An-Min
Tang, Nian-Sheng
论文数: 0引用数: 0
h-index: 0
机构:
Yunnan Univ, Yunnan Key Lab Stat Modeling & Data Anal, Kunming 650091, Peoples R ChinaYunnan Univ, Yunnan Key Lab Stat Modeling & Data Anal, Kunming 650091, Peoples R China
机构:
Guizhou Univ Finance & Econ, Dept Math & Stat, Guiyang 550025, Peoples R ChinaYunnan Univ, Yunnan Key Lab Stat Modeling & Data Anal, Kunming 650091, Yunnan, Peoples R China
Duan, Xingde
Zhao, Yuanying
论文数: 0引用数: 0
h-index: 0
机构:
Guiyang Univ, Coll Math & Informat Sci, Guiyang 550005, Peoples R ChinaYunnan Univ, Yunnan Key Lab Stat Modeling & Data Anal, Kunming 650091, Yunnan, Peoples R China
机构:
Yunnan Univ, Key Lab Stat Modeling & Data Anal Yunnan Prov, Kunming 650091, Peoples R ChinaYunnan Univ, Key Lab Stat Modeling & Data Anal Yunnan Prov, Kunming 650091, Peoples R China
Tang, An-Min
Tang, Nian-Sheng
论文数: 0引用数: 0
h-index: 0
机构:
Yunnan Univ, Key Lab Stat Modeling & Data Anal Yunnan Prov, Kunming 650091, Peoples R ChinaYunnan Univ, Key Lab Stat Modeling & Data Anal Yunnan Prov, Kunming 650091, Peoples R China
Tang, Nian-Sheng
Zhu, Hongtu
论文数: 0引用数: 0
h-index: 0
机构:
Univ North Carolina Chapel Hill, Dept Biostat, Chapel Hill, NC USAYunnan Univ, Key Lab Stat Modeling & Data Anal Yunnan Prov, Kunming 650091, Peoples R China