Bayesian variable selection and estimation in semiparametric joint models of multivariate longitudinal and survival data
被引:15
|
作者:
Tang, An-Min
论文数: 0引用数: 0
h-index: 0
机构:
Yunnan Univ, Dept Stat, Kunming 650091, Peoples R ChinaYunnan Univ, Dept Stat, Kunming 650091, Peoples R China
Tang, An-Min
[1
]
Zhao, Xingqiu
论文数: 0引用数: 0
h-index: 0
机构:
Hong Kong Polytech Univ, Dept Appl Math, Hong Kong, Hong Kong, Peoples R China
Hong Kong Polytech Univ, Shenzhen Res Inst, Shenzhen 518057, Peoples R ChinaYunnan Univ, Dept Stat, Kunming 650091, Peoples R China
Zhao, Xingqiu
[2
,3
]
Tang, Nian-Sheng
论文数: 0引用数: 0
h-index: 0
机构:
Yunnan Univ, Dept Stat, Kunming 650091, Peoples R ChinaYunnan Univ, Dept Stat, Kunming 650091, Peoples R China
Tang, Nian-Sheng
[1
]
机构:
[1] Yunnan Univ, Dept Stat, Kunming 650091, Peoples R China
[2] Hong Kong Polytech Univ, Dept Appl Math, Hong Kong, Hong Kong, Peoples R China
[3] Hong Kong Polytech Univ, Shenzhen Res Inst, Shenzhen 518057, Peoples R China
This paper presents a novel semiparametric joint model for multivariate longitudinal and survival data (SJMLS) by relaxing the normality assumption of the longitudinal outcomes, leaving the baseline hazard functions unspecified and allowing the history of the longitudinal response having an effect on the risk of dropout. Using Bayesian penalized splines to approximate the unspecified baseline hazard function and combining the Gibbs sampler and the Metropolis-Hastings algorithm, we propose a Bayesian Lasso (BLasso) method to simultaneously estimate unknown parameters and select important covariates in SJMLS. Simulation studies are conducted to investigate the finite sample performance of the proposed techniques. An example from the International BreastCancer Study Group (IBCSG) is used to illustrate the proposed methodologies.
机构:
Shanghai Univ Int Business & Econ, Sch Business Informat, Shanghai 201620, Peoples R China
Shanghai Univ Finance & Econ, Sch Stat & Management, Shanghai 200433, Peoples R China
Shanghai Univ Finance & Econ, Key Lab Math Econ, Shanghai 200433, Peoples R ChinaShanghai Univ Int Business & Econ, Sch Business Informat, Shanghai 201620, Peoples R China
Li, Rui
Wan, Alan T. K.
论文数: 0引用数: 0
h-index: 0
机构:
City Univ Hong Kong, Dept Management Sci, Kowloon, Hong Kong, Peoples R ChinaShanghai Univ Int Business & Econ, Sch Business Informat, Shanghai 201620, Peoples R China
Wan, Alan T. K.
You, Jinhong
论文数: 0引用数: 0
h-index: 0
机构:
Shanghai Univ Finance & Econ, Sch Stat & Management, Shanghai 200433, Peoples R China
Shanghai Univ Finance & Econ, Key Lab Math Econ, Shanghai 200433, Peoples R ChinaShanghai Univ Int Business & Econ, Sch Business Informat, Shanghai 201620, Peoples R China
机构:
Univ Western Ontario, Dept Stat & Actuarial Sci, London, ON, CanadaUniv Western Ontario, Dept Stat & Actuarial Sci, London, ON, Canada
He, Wenqing
Yi, Grace Y. Y.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Western Ontario, Dept Stat & Actuarial Sci, London, ON, Canada
Univ Western Ontario, Dept Comp Sci, London, ON, CanadaUniv Western Ontario, Dept Stat & Actuarial Sci, London, ON, Canada
Yi, Grace Y. Y.
Yuan, Ao
论文数: 0引用数: 0
h-index: 0
机构:
Georgetown Univ, Dept Biostat Bioinformat & Biomath, Washington, DC USAUniv Western Ontario, Dept Stat & Actuarial Sci, London, ON, Canada
Yuan, Ao
[J].
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE,
2024,
52
(02):
: 380
-
413