Bayesian variable selection and estimation in semiparametric joint models of multivariate longitudinal and survival data

被引:15
|
作者
Tang, An-Min [1 ]
Zhao, Xingqiu [2 ,3 ]
Tang, Nian-Sheng [1 ]
机构
[1] Yunnan Univ, Dept Stat, Kunming 650091, Peoples R China
[2] Hong Kong Polytech Univ, Dept Appl Math, Hong Kong, Hong Kong, Peoples R China
[3] Hong Kong Polytech Univ, Shenzhen Res Inst, Shenzhen 518057, Peoples R China
基金
中国国家自然科学基金;
关键词
Bayesian Lasso; Bayesian penalized splines; Joint models; Mixture of normals; Survival analysis; TIME-TO-EVENT; STRUCTURAL EQUATION MODELS; ORACLE PROPERTIES; LASSO; DISTRIBUTIONS; REGRESSION; DIRICHLET; SHRINKAGE; MIXTURES; OUTCOMES;
D O I
10.1002/bimj.201500070
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper presents a novel semiparametric joint model for multivariate longitudinal and survival data (SJMLS) by relaxing the normality assumption of the longitudinal outcomes, leaving the baseline hazard functions unspecified and allowing the history of the longitudinal response having an effect on the risk of dropout. Using Bayesian penalized splines to approximate the unspecified baseline hazard function and combining the Gibbs sampler and the Metropolis-Hastings algorithm, we propose a Bayesian Lasso (BLasso) method to simultaneously estimate unknown parameters and select important covariates in SJMLS. Simulation studies are conducted to investigate the finite sample performance of the proposed techniques. An example from the International BreastCancer Study Group (IBCSG) is used to illustrate the proposed methodologies.
引用
收藏
页码:57 / 78
页数:22
相关论文
共 50 条
  • [41] Semiparametric GMM estimation and variable selection in dynamic panel data models with fixed effects
    Li, Rui
    Wan, Alan T. K.
    You, Jinhong
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2016, 100 : 401 - 423
  • [42] Consistent estimation of a joint model for multivariate longitudinal and survival data with latent variables
    Kang, Kai
    Song, Xinyuan
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2022, 187
  • [43] Bayesian analysis for mixture of latent variable hidden Markov models with multivariate longitudinal data
    Xia, Ye-Mao
    Tang, Nian-Sheng
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2019, 132 : 190 - 211
  • [44] A fast approximate EM algorithm for joint models of survival and multivariate longitudinal data
    Murray, James
    Philipson, Pete
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2022, 170
  • [45] Bayesian Transformation Models for Multivariate Survival Data
    de Castro, Mario
    Chen, Ming-Hui
    Ibrahim, Joseph G.
    Klein, John P.
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2014, 41 (01) : 187 - 199
  • [46] ESTIMATION AND VARIABLE SELECTION FOR SEMIPARAMETRIC ADDITIVE PARTIAL LINEAR MODELS
    Liu, Xiang
    Wang, Li
    Liang, Hua
    [J]. STATISTICA SINICA, 2011, 21 (03) : 1225 - 1248
  • [47] Analysis of Multivariate Survival Data under Semiparametric Copula Models
    He, Wenqing
    Yi, Grace Y. Y.
    Yuan, Ao
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2024, 52 (02): : 380 - 413
  • [48] Bayesian Joint Semiparametric Mean-Covariance Modeling for Longitudinal Data
    Liu, Meimei
    Zhang, Weiping
    Chen, Yu
    [J]. COMMUNICATIONS IN MATHEMATICS AND STATISTICS, 2019, 7 (03) : 253 - 267
  • [49] A Bayesian semiparametric multivariate joint model for multiple longitudinal outcomes and a time-to-event
    Rizopoulos, Dimitris
    Ghosh, Pulak
    [J]. STATISTICS IN MEDICINE, 2011, 30 (12) : 1366 - 1380
  • [50] Semiparametric Bayesian analysis of selection models
    Lee, JY
    Berger, JO
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2001, 96 (456) : 1397 - 1409