Quantized thermal transport in single-atom junctions

被引:178
|
作者
Cui, Longji [1 ]
Jeong, Wonho [1 ]
Hur, Sunghoon [1 ]
Matt, Manuel [2 ]
Klockner, Jan C. [2 ]
Pauly, Fabian [2 ]
Nielaba, Peter [2 ]
Carlos Cuevas, Juan [3 ,4 ]
Meyhofer, Edgar [1 ]
Reddy, Pramod [5 ]
机构
[1] Univ Michigan, Dept Mech Engn, Ann Arbor, MI 48109 USA
[2] Univ Konstanz, Dept Phys, D-78457 Constance, Germany
[3] Univ Autonoma Madrid, Dept Fis Teor Mat Condensada, E-28049 Madrid, Spain
[4] Univ Autonoma Madrid, Condensed Matter Phys Ctr IFIMAC, E-28049 Madrid, Spain
[5] Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
SIZED POINT-CONTACT; MOLECULAR JUNCTIONS; HEAT-FLOW; METALLIC CONTACTS; ROOM-TEMPERATURE; SHOT-NOISE; QUANTUM; CONDUCTANCE; THERMOPOWER; THERMOELECTRICITY;
D O I
10.1126/science.aam6622
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Thermal transport in individual atomic junctions and chains is of great fundamental interest because of the distinctive quantum effects expected to arise in them. By using novel, custom-fabricated, picowatt-resolution calorimetric scanning probes, we measured the thermal conductance of gold and platinum metallic wires down to single-atom junctions. Our work reveals that the thermal conductance of gold single-atom junctions is quantized at room temperature and shows that the Wiedemann-Franz law relating thermal and electrical conductance is satisfied even in single-atom contacts. Furthermore, we quantitatively explain our experimental results within the Landauer framework for quantum thermal transport. The experimental techniques reported here will enable thermal transport studies in atomic and molecular chains, which will be key to investigating numerous fundamental issues that thus far have remained experimentally inaccessible.
引用
收藏
页码:1192 / 1195
页数:4
相关论文
共 50 条
  • [1] Plasticity of single-atom Pb junctions
    Mueller, M.
    Salgado, C.
    Neel, N.
    Palacios, J. J.
    Kroeger, J.
    PHYSICAL REVIEW B, 2016, 93 (23)
  • [2] Single-atom and two-atom Ramsey interferometry with quantized fields
    Agarwal, GS
    Pathak, PK
    Scully, MO
    PHYSICAL REVIEW A, 2003, 67 (04)
  • [3] Ab Initio Transport Calculations for Single-Atom Copper Junctions in the Presence of Hydrogen Chloride
    Schnaebele, Paul
    Korytar, Richard
    Bagrets, Alexei
    Roman, Tanglaw
    Schimmel, Thomas
    Gross, Axel
    Evers, Ferdinand
    JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (48): : 28252 - 28257
  • [4] Transport through a single-atom junction
    Mozos, JL
    Wan, CC
    Taraschi, G
    Wang, J
    Guo, H
    JOURNAL OF PHYSICS-CONDENSED MATTER, 1998, 10 (12) : 2663 - 2671
  • [5] Multiple Andreev reflection in single-atom niobium junctions
    Ludoph, B
    van der Post, N
    Bratus', EN
    Bezuglyi, EV
    Shumeiko, VS
    Wendin, G
    van Ruitenbeek, JM
    PHYSICAL REVIEW B, 2000, 61 (12) : 8561 - 8569
  • [6] Single-atom conditional manipulation of confined quantized electromagnetic field
    Napoli, A
    ULTRAFAST DYNAMICS OF QUANTUM SYSTEMS: PHYSICAL PROCESSES AND SPECTROSCOPIC TECHNIQUES, 1998, 372 : 693 - 693
  • [7] Scanning tunneling microscopic investigations into the conductance of single-atom junctions
    Kroger, J.
    Sperl, A.
    Néel, N.
    Berndt, R.
    Journal of Scanning Probe Microscopy, 2009, 4 (02): : 49 - 65
  • [8] Conductance of single-atom magnetic junctions: A first-principles study
    Xie, Yi-qun
    Li, Qiang
    Huang, Lei
    Ye, Xiang
    Ke, San-Huang
    APPLIED PHYSICS LETTERS, 2012, 101 (19)
  • [9] Single-atom control of electrical conductance and thermopower through single-cluster junctions
    Yuan, Saisai
    Xu, Xiaohui
    Daaoub, Abdalghani
    Fang, Chao
    Cao, Wenqiang
    Chen, Hang
    Sangtarash, Sara
    Zhang, Jiangwei
    Sadeghi, Hatef
    Hong, Wenjing
    NANOSCALE, 2021, 13 (29) : 12594 - 12601
  • [10] Single-atom heat engine as a sensitive thermal probe
    Levy, Amikam
    Goeb, Moritz
    Deng, Bo
    Singer, Kilian
    Torrontegui, E.
    Wang, Daqing
    NEW JOURNAL OF PHYSICS, 2020, 22 (09):