Tutte chromatic identities from the Temperley-Lieb algebra

被引:15
|
作者
Fendley, Paul [1 ,2 ,3 ]
Krushkal, Vyacheslav [3 ]
机构
[1] Univ Oxford All Souls Coll, Oxford OX13NP, England
[2] Univ Oxford, Rudolf Peierls Ctr Theoret Phys, Oxford OX13NP, England
[3] Univ Virginia, Dept Math, Charlottesville, VA 22904 USA
基金
英国工程与自然科学研究理事会;
关键词
POLYNOMIALS;
D O I
10.2140/gt.2009.13.709
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper introduces a conceptual framework, in the context of quantum topology and the algebras underlying it, for analyzing relations obeyed by the chromatic polynomial chi(Q) of planar graphs. Using it we give new proofs and substantially extend a number of classical results concerning the combinatorics of the chromatic polynomial. In particular, we show that Tutte's golden identity is a consequence of level-rank duality for SO(N) topological quantum field theories and Birman-Murakami-Wenzl algebras. This identity is a remarkable feature of the chromatic polynomial relating chi(phi + 2) for any triangulation of the sphere to (chi(phi + 1)(2)) for the same graph, where phi denotes the golden ratio. The new viewpoint presented here explains that Tutte's identity is special to these values of the parameter Q. A natural context for analyzing such properties of the chromatic polynomial is provided by the chromatic algebra, whose Markov trace is the chromatic polynomial of an associated graph. We use it to show that another identity of Tutte's for the chromatic polynomial at Q = phi + 1 arises from a Jones-Wenzl projector in the Temperley-Lieb algebra. We generalize this identity to each value Q = 2 + 2 cos(2 pi j / (n + 1)) for j < n positive integers. When j = 1, these Q are the Beraha numbers, where the existence of such identities was conjectured by Tutte. We present a recursive formula for this sequence of chromatic polynomial relations.
引用
收藏
页码:709 / 741
页数:33
相关论文
共 50 条
  • [1] The matrix of chromatic joins and the Temperley-Lieb algebra
    Cautis, S
    Jackson, DM
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2003, 89 (01) : 109 - 155
  • [2] CALCULATIONS WITH THE TEMPERLEY-LIEB ALGEBRA
    LICKORISH, WBR
    COMMENTARII MATHEMATICI HELVETICI, 1992, 67 (04) : 571 - 591
  • [3] Framization of the Temperley-Lieb algebra
    Goundaroulis, Dimos
    Juyumaya, Jesus
    Kontogeorgis, Aristides
    Lambropoulou, Sofia
    MATHEMATICAL RESEARCH LETTERS, 2017, 24 (02) : 299 - 345
  • [4] Meanders and the Temperley-Lieb algebra
    P. Di Francesco
    O. Golinelli
    E. Guitter
    Communications in Mathematical Physics, 1997, 186 (1) : 1 - 59
  • [5] Meanders and the Temperley-Lieb algebra
    DiFrancesco, P
    Golinelli, O
    Guitter, E
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1997, 186 (01) : 1 - 59
  • [6] THE MODULAR TEMPERLEY-LIEB ALGEBRA
    Spencer, Robert A.
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2023, 53 (01) : 177 - 208
  • [7] The Fibonacci Model and the Temperley-Lieb Algebra
    Kauffman, Louis H.
    Lomonaco, Samuel J., Jr.
    QUANTUM INFORMATION AND COMPUTATION VII, 2009, 7342
  • [8] THE FIBONACCI MODEL AND THE TEMPERLEY-LIEB ALGEBRA
    Kauffman, Louis H.
    Lomonaco, Samuel J., Jr.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2008, 22 (29): : 5065 - 5080
  • [9] THE BLOB ALGEBRA AND THE PERIODIC TEMPERLEY-LIEB ALGEBRA
    MARTIN, P
    SALEUR, H
    LETTERS IN MATHEMATICAL PHYSICS, 1994, 30 (03) : 189 - 206
  • [10] A Temperley-Lieb Analogue for the BMW Algebra
    Lehrer, G. I.
    Zhang, R. B.
    REPRESENTATION THEORY OF ALGEBRAIC GROUPS AND QUANTUM GROUPS, 2010, 284 : 155 - +