Monte Carlo tree search with optimal computing budget allocation

被引:0
|
作者
Li, Yunchuan [1 ,2 ]
Fu, Michael [2 ,3 ]
Xu, Jie [4 ]
机构
[1] Univ Maryland, Dept Elect & Comp Engn, College Pk, MD 20742 USA
[2] Univ Maryland, Syst Res Inst, College Pk, MD 20742 USA
[3] Univ Maryland, Robert H Smith Sch Business, College Pk, MD 20742 USA
[4] George Mason Univ, Dept Syst Engn & Operat Res, Fairfax, VA 22030 USA
基金
美国国家科学基金会;
关键词
EFFICIENCY;
D O I
10.1109/cdc40024.2019.9030099
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We analyze a tree search problem with an underlying Markov decision process, in which the goal is to identify the best action at the root that achieves the highest cumulative reward. We present a new tree policy that optimally allocates a limited computing budget to maximize a lower bound on the probability of correctly selecting the best action at each node. Compared to the widely used Upper Confidence Bound (UCB) type of tree policies, the new tree policy presents a more balanced approach to manage the exploration and exploitation trade-off when the sampling budget is limited. Furthermore, UCB assumes that the support of reward distribution is known, whereas our algorithm relaxes this assumption, and can be applied to game trees with mild modifications. A numerical experiment is conducted to demonstrate the efficiency of our algorithm in selecting the best action at the root.
引用
收藏
页码:6332 / 6337
页数:6
相关论文
共 50 条
  • [21] Optimal Cislunar Architecture Design Using Monte Carlo Tree Search Methods
    Michael Klonowski
    Marcus J. Holzinger
    Naomi Owens Fahrner
    The Journal of the Astronautical Sciences, 70
  • [22] Optimal Cislunar Architecture Design Using Monte Carlo Tree Search Methods
    Klonowski, Michael
    Holzinger, Marcus J.
    Fahrner, Naomi Owens
    JOURNAL OF THE ASTRONAUTICAL SCIENCES, 2023, 70 (03):
  • [23] Optimal state space reconstruction via Monte Carlo decision tree search
    Kraemer, K. Hauke
    Gelbrecht, Maximilian
    Pavithran, Induja
    Sujith, R., I
    Marwan, Norbert
    NONLINEAR DYNAMICS, 2022, 108 (02) : 1525 - 1545
  • [24] Offline and Online Algorithms for Cache Allocation with Monte Carlo Tree Search and a Learned Model
    Gu, Yibin
    Wang, Hua
    Luo, Man
    Tang, Jingyu
    Zhou, Ke
    2023 IEEE 41ST INTERNATIONAL CONFERENCE ON COMPUTER DESIGN, ICCD, 2023, : 126 - 133
  • [25] OPTIMAL COMPUTING BUDGET ALLOCATION FOR CONSTRAINED OPTIMIZATION
    Pujowidianto, Nugroho Artadi
    Lee, Loo Hay
    Chen, Chun-Hung
    Yap, Chee Meng
    PROCEEDINGS OF THE 2009 WINTER SIMULATION CONFERENCE (WSC 2009 ), VOL 1-4, 2009, : 576 - +
  • [26] OPTIMAL COMPUTING BUDGET ALLOCATION WITH INPUT UNCERTAINTY
    Gao, Siyang
    Xiao, Hui
    Zhou, Enlu
    Chen, Weiwei
    2016 WINTER SIMULATION CONFERENCE (WSC), 2016, : 839 - 846
  • [27] Optimal Computing Budget Allocation for Complete Ranking
    Xiao, Hui
    Lee, Loo Hay
    Ng, Kien Ming
    IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2014, 11 (02) : 516 - 524
  • [28] Approximation Methods for Monte Carlo Tree Search
    Aksenov, Kirill
    Panov, Aleksandr, I
    PROCEEDINGS OF THE FOURTH INTERNATIONAL SCIENTIFIC CONFERENCE INTELLIGENT INFORMATION TECHNOLOGIES FOR INDUSTRY (IITI'19), 2020, 1156 : 68 - 74
  • [29] A TUTORIAL INTRODUCTION TO MONTE CARLO TREE SEARCH
    Fu, Michael C.
    2020 WINTER SIMULATION CONFERENCE (WSC), 2020, : 1178 - 1193
  • [30] Monte-Carlo Tree Search for Logistics
    Edelkamp, Stefan
    Gath, Max
    Greulich, Christoph
    Humann, Malte
    Herzog, Otthein
    Lawo, Michael
    COMMERCIAL TRANSPORT, 2016, : 427 - 440