Data-Independent Microbial Metabolomics with Ambient Ionization Mass Spectrometry

被引:17
|
作者
Rath, Christopher M. [1 ]
Yang, Jane Y. [2 ]
Alexandrov, Theodore [1 ,3 ]
Dorrestein, Pieter C. [1 ,2 ]
机构
[1] Univ Calif San Diego, Skaggs Sch Pharm & Pharmaceut Sci, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Dept Chem & Biochem, La Jolla, CA 92093 USA
[3] Univ Bremen, Ctr Ind Math, D-28359 Bremen, Germany
关键词
Ambient mass spectrometry; Data-independent MS/MS; FTICR-MS; MALDI-TOF IMS; Metabolomics; Microbiology; MS/MS molecular networking; NanoDESI; DESORPTION ELECTROSPRAY-IONIZATION; BACILLUS-SUBTILIS; PSEUDOMONAS-AERUGINOSA; DRUG DISCOVERY; VIRULENCE; EXCHANGE; MICROORGANISMS; PROTEOMICS; NETWORKS; BACTERIA;
D O I
10.1007/s13361-013-0608-y
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Atmospheric ionization methods are ideally suited for prolonged MS/MS analysis. Data-independent MS/MS is a complementary technique for analysis of biological samples as compared to data-dependent analysis. Here, we pair data-independent MS/MS with the ambient ionization method nanospray desorption electrospray ionization (nanoDESI) for untargeted analysis of bacterial metabolites. Proof-of-principle data and analysis are illustrated by sampling Bacillus subtilis and Pseudomonas aeruginosa directly from Petri dishes. We found that this technique enables facile comparisons between strains via MS and MS/MS plots which can be translated to chemically informative molecular maps through MS/MS networking. The development of novel techniques to characterize microbial metabolites allows rapid and efficient analysis of metabolic exchange factors. This is motivated by our desire to develop novel techniques to explore the role of interspecies interactions in the environment, health, and disease. This is a contribution to honor Professor Catherine C. Fenselau in receiving the prestigious ASMS Award for a Distinguished Contribution in Mass Spectrometry for her pioneering work on microbial mass spectrometry.
引用
收藏
页码:1167 / 1176
页数:10
相关论文
共 50 条
  • [41] Mapping differential interactomes by affinity purification coupled with data-independent mass spectrometry acquisition
    Jean-Philippe Lambert
    Gordana Ivosev
    Amber L Couzens
    Brett Larsen
    Mikko Taipale
    Zhen-Yuan Lin
    Quan Zhong
    Susan Lindquist
    Marc Vidal
    Ruedi Aebersold
    Tony Pawson
    Ron Bonner
    Stephen Tate
    Anne-Claude Gingras
    Nature Methods, 2013, 10 : 1239 - 1245
  • [42] A crustacean neuropeptide spectral library for data-independent acquisition (DIA) mass spectrometry applications
    Fields, Lauren
    Ma, Min
    Delaney, Kellen
    Phetsanthad, Ashley
    Li, Lingjun
    PROTEOMICS, 2024, 24 (15)
  • [43] Metabolomic spectral libraries for data-independent SWATH liquid chromatography mass spectrometry acquisition
    Tobias Bruderer
    Emmanuel Varesio
    Anita O. Hidasi
    Eva Duchoslav
    Lyle Burton
    Ron Bonner
    Gérard Hopfgartner
    Analytical and Bioanalytical Chemistry, 2018, 410 : 1873 - 1884
  • [44] Data-independent acquisition mass spectrometry identification of extracellular vesicle biomarkers for gastric adenocarcinoma
    Gu, Lei
    Chen, Jin
    Yang, Yueying
    Zhang, Yunpeng
    Tian, Yuying
    Jiang, Jinhua
    Zhou, Donglei
    Liao, Lujian
    FRONTIERS IN ONCOLOGY, 2022, 12
  • [45] Identifcation of candidate biomarkers for polyarteritis nodosa using data-independent acquisition mass spectrometry
    Ma, Huimin
    Cai, Xintian
    Zhang, Delian
    Zhu, Qing
    Wu, Ting
    Aierken, Xiayire
    Ahmat, Ayguzaili
    Liu, Shasha
    Li, Nanfang
    AMERICAN JOURNAL OF TRANSLATIONAL RESEARCH, 2025, 17 (01):
  • [46] Optimization of Data-Independent Acquisition Mass Spectrometry for Deep and Highly Sensitive Proteomic Analysis
    Kawashima, Yusuke
    Watanabe, Eiichiro
    Umeyama, Taichi
    Nakajima, Daisuke
    Hattori, Masahira
    Honda, Kenya
    Ohara, Osamu
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2019, 20 (23)
  • [47] Advances in data-independent acquisition mass spectrometry towards comprehensive digital proteome landscape
    Kitata, Reta Birhanu
    Yang, Jhih-Ci
    Chen, Yu-Ju
    MASS SPECTROMETRY REVIEWS, 2023, 42 (06) : 2324 - 2348
  • [48] Data-independent acquisition mass spectrometry (DIA-MS) for proteomic applications in oncology
    Krasny, Lukas
    Huang, Paul H.
    MOLECULAR OMICS, 2021, 17 (01) : 29 - 42
  • [49] Initial Guidelines for Manuscripts Employing Data-independent Acquisition Mass Spectrometry for Proteomic Analysis
    Chalkley, Robert J.
    MacCoss, Michael J.
    Jaffe, Jacob D.
    Rost, Hannes L.
    MOLECULAR & CELLULAR PROTEOMICS, 2019, 18 (01) : 1 - 2
  • [50] Dynamic Data-Independent Acquisition Mass Spectrometry with Real-Time Retrospective Alignment
    Heil, Lilian R.
    Remes, Philip M.
    Canterbury, Jesse D.
    Yip, Ping
    Barshop, William D.
    Wu, Christine C.
    MacCoss, Michael J.
    ANALYTICAL CHEMISTRY, 2023, 95 (32) : 11854 - 11858