Data-Independent Microbial Metabolomics with Ambient Ionization Mass Spectrometry

被引:17
|
作者
Rath, Christopher M. [1 ]
Yang, Jane Y. [2 ]
Alexandrov, Theodore [1 ,3 ]
Dorrestein, Pieter C. [1 ,2 ]
机构
[1] Univ Calif San Diego, Skaggs Sch Pharm & Pharmaceut Sci, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Dept Chem & Biochem, La Jolla, CA 92093 USA
[3] Univ Bremen, Ctr Ind Math, D-28359 Bremen, Germany
关键词
Ambient mass spectrometry; Data-independent MS/MS; FTICR-MS; MALDI-TOF IMS; Metabolomics; Microbiology; MS/MS molecular networking; NanoDESI; DESORPTION ELECTROSPRAY-IONIZATION; BACILLUS-SUBTILIS; PSEUDOMONAS-AERUGINOSA; DRUG DISCOVERY; VIRULENCE; EXCHANGE; MICROORGANISMS; PROTEOMICS; NETWORKS; BACTERIA;
D O I
10.1007/s13361-013-0608-y
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Atmospheric ionization methods are ideally suited for prolonged MS/MS analysis. Data-independent MS/MS is a complementary technique for analysis of biological samples as compared to data-dependent analysis. Here, we pair data-independent MS/MS with the ambient ionization method nanospray desorption electrospray ionization (nanoDESI) for untargeted analysis of bacterial metabolites. Proof-of-principle data and analysis are illustrated by sampling Bacillus subtilis and Pseudomonas aeruginosa directly from Petri dishes. We found that this technique enables facile comparisons between strains via MS and MS/MS plots which can be translated to chemically informative molecular maps through MS/MS networking. The development of novel techniques to characterize microbial metabolites allows rapid and efficient analysis of metabolic exchange factors. This is motivated by our desire to develop novel techniques to explore the role of interspecies interactions in the environment, health, and disease. This is a contribution to honor Professor Catherine C. Fenselau in receiving the prestigious ASMS Award for a Distinguished Contribution in Mass Spectrometry for her pioneering work on microbial mass spectrometry.
引用
收藏
页码:1167 / 1176
页数:10
相关论文
共 50 条
  • [21] OptiMissP: A dashboard to assess missingness in proteomic data-independent acquisition mass spectrometry
    Arioli, Angelica
    Dagliati, Arianna
    Geary, Bethany
    Peek, Niels
    Kalra, Philip A.
    Whetton, Anthony D.
    Geifman, Nophar
    PLOS ONE, 2021, 16 (04):
  • [22] Targeted phosphoproteomics of insulin signaling using data-independent acquisition mass spectrometry
    Parker, Benjamin L.
    Yang, Guang
    Humphrey, Sean J.
    Chaudhuri, Rima
    Ma, Xiuquan
    Peterman, Scott
    James, David E.
    SCIENCE SIGNALING, 2015, 8 (380)
  • [23] Recent advances of data-independent acquisition mass spectrometry-based proteomics
    Guo, Tiannan
    Aebersold, Ruedi
    PROTEOMICS, 2023, 23 (7-8)
  • [24] Data-Independent Mass Spectrometry Approach for Screening and. Identification of DNA Adducts
    Guo, Jingshu
    Villalta, Peter W.
    Turesky, Robert J.
    ANALYTICAL CHEMISTRY, 2017, 89 (21) : 11728 - 11736
  • [25] Differential quantification of isobaric phosphopeptides using data-independent acquisition mass spectrometry
    Sidoli, Simone
    Fujiwara, Rina
    Kulej, Katarzyna
    Garcia, Benjamin A.
    MOLECULAR BIOSYSTEMS, 2016, 12 (08) : 2385 - 2388
  • [26] Data-independent Acquisition Improves Quantitative Cross-linking Mass Spectrometry
    Mueller, Franze
    Kolbowski, Lars
    Bernhardt, Oliver M.
    Reiter, Lukas
    Rappsilber, Juri
    MOLECULAR & CELLULAR PROTEOMICS, 2019, 18 (04) : 786 - 795
  • [27] Quantitative Chemoproteomic Profiling with Data-Independent Acquisition-Based Mass Spectrometry
    Yang, Fan
    Jia, Guogeng
    Guo, Jiuzhou
    Liu, Yuan
    Wang, Chu
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2022, 144 (02) : 901 - 911
  • [28] Specialised skin cancer spectral library for use in data-independent mass spectrometry
    Teh, Rachel
    Azimi, Ali
    Ali, Marina
    Mann, Graham
    Fernandez-Penas, Pablo
    PROTEOMICS, 2021, 21 (19)
  • [29] Separation and mass spectrometry in microbial metabolomics
    Garcia, David E.
    Baidoo, Edward E.
    Benke, Peter I.
    Pingitore, Francesco
    Tang, Yinjie J.
    Villa, Sandra
    Keasling, Jay D.
    CURRENT OPINION IN MICROBIOLOGY, 2008, 11 (03) : 233 - 239
  • [30] Accurate Precursor Mass Assignment Improves Peptide Identification in Data-Independent Acquisition Mass Spectrometry
    Mun, Dong-Gi
    Nam, Dowoon
    Kim, Hokeun
    Pandey, Akhilesh
    Lee, Sang-Won
    ANALYTICAL CHEMISTRY, 2019, 91 (13) : 8453 - 8460