Keypoint-Based Disentangled Pose Network for Category-Level 6-D Object Pose Tracking

被引:1
|
作者
Sun, Shantong [1 ]
Liu, Rongke [2 ]
Sun, Shuqiao [1 ]
Park, Unsang [3 ]
机构
[1] Beihang Univ, Sch Elect & Informat Engn, Beijing 100191, Peoples R China
[2] Beihang Univ, Beijing 100191, Peoples R China
[3] Sogang Univ, Seoul 04107, South Korea
基金
中国国家自然科学基金;
关键词
Three-dimensional displays; Feature extraction; Pose estimation; Solid modeling; Neural networks; Transforms; Training data;
D O I
10.1109/MCG.2021.3114181
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Category-level 6-D object pose tracking is very challenging in the field of 3-D computer vision. Keypoint-based object pose estimation has demonstrated its effectiveness in dealing with it. However, current approaches first estimate the keypoints through a neural network and further compute the interframe pose change via least-squares optimization. They estimate rotation and translation in the same way, ignoring the differences between them. In this work, we propose a keypoint-based disentangled pose network, which disentangles the 6-D object pose change to 3-D rotation and 3-D translation. Specifically, the translation is directly estimated by the network and the rotation is indirectly calculated by singular value decomposition according to the keypoints. Extensive experiments on the NOCS-REAL275 dataset demonstrate the superiority of our method.
引用
收藏
页码:28 / 36
页数:9
相关论文
共 50 条
  • [21] A Visual Navigation Perspective for Category-Level Object Pose Estimation
    Guo, Jiaxin
    Zhong, Fangxun
    Xiong, Rong
    Liu, Yunhui
    Wang, Yue
    Liao, Yiyi
    [J]. COMPUTER VISION - ECCV 2022, PT VI, 2022, 13666 : 123 - 141
  • [22] iCaps: Iterative Category-Level Object Pose and Shape Estimation
    Deng, Xinke
    Geng, Junyi
    Bretl, Timothy
    Xiang, Yu
    Fox, Dieter
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2022, 7 (02) : 1784 - 1791
  • [23] Zero-Shot Category-Level Object Pose Estimation
    Goodwin, Walter
    Vaze, Sagar
    Havoutis, Ioannis
    Posner, Ingmar
    [J]. COMPUTER VISION, ECCV 2022, PT XXXIX, 2022, 13699 : 516 - 532
  • [24] Category-Level Metric Scale Object Shape and Pose Estimation
    Lee, Taeyeop
    Lee, Byeong-Uk
    Kim, Myungchul
    Kweon, I. S.
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2021, 6 (04): : 8575 - 8582
  • [25] CatTrack: Single-Stage Category-Level 6D Object Pose Tracking via Convolution and Vision Transformer
    Yu, Sheng
    Zhai, Di-Hua
    Xia, Yuanqing
    Li, Dong
    Zhao, Shiqi
    [J]. IEEE Transactions on Multimedia, 2024, 26 : 1665 - 1680
  • [26] CatTrack: Single-Stage Category-Level 6D Object Pose Tracking via Convolution and Vision Transformer
    Yu, Sheng
    Zhai, Di-Hua
    Xia, Yuanqing
    Li, Dong
    Zhao, Shiqi
    [J]. IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 1665 - 1680
  • [27] Robotic Continuous Grasping System by Shape Transformer-Guided Multiobject Category-Level 6-D Pose Estimation
    Liu, Jian
    Sun, Wei
    Liu, Chongpei
    Zhang, Xing
    Fu, Qiang
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2023, 19 (11) : 11171 - 11181
  • [28] HS-Pose: Hybrid Scope Feature Extraction for Category-level Object Pose Estimation
    Zheng, Linfang
    Wang, Chen
    Sun, Yinghan
    Dasgupta, Esha
    Chen, Hua
    Leonardis, Ales
    Zhang, Wei
    Chang, Hyung Jin
    [J]. 2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 17163 - 17173
  • [29] Optimal Pose and Shape Estimation for Category-level 3D Object Perception
    Shi, Jingnan
    Yang, Heng
    Carlone, Luca
    [J]. ROBOTICS: SCIENCE AND SYSTEM XVII, 2021,
  • [30] SAR-Net: Shape Alignment and Recovery Network for Category-level 6D Object Pose and Size Estimation
    Lin, Haitao
    Liu, Zichang
    Cheang, Chilam
    Fu, Yanwei
    Guo, Guodong
    Xue, Xiangyang
    [J]. 2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 6697 - 6707