Active optical frequency standard using sequential coupling of atomic ensembles

被引:36
|
作者
Kazakov, G. A. [1 ,2 ]
Schumm, T. [1 ]
机构
[1] Vienna Univ Technol, Atominst, A-1020 Vienna, Austria
[2] St Petersburg State Polytech Univ, St Petersburg 195251, Russia
来源
PHYSICAL REVIEW A | 2013年 / 87卷 / 01期
基金
奥地利科学基金会;
关键词
PUMPING STATISTICS; LASER; DYNAMICS;
D O I
10.1103/PhysRevA.87.013821
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Recently, several theoretical proposals addressed the generation of an active optical frequency standard based on atomic ensembles trapped in an optical lattice potential inside an optical resonator. Using atoms with a narrow linewidth transition and population inversion together with a "bad" cavity allows us to realize the super-radiant photon emission regime. These schemes reduce the influence of mechanical or thermal vibrations of the cavity mirrors on the emitted optical frequency, overcoming current limitation in passive optical standards. The coherence time of the emitted light is ultimately limited by the lifetime of the atoms in the optical lattice potential. Therefore these schemes would produce one light pulse per atomic ensemble without a phase relation between pulses. Here we study how phase coherence between pulses can be maintained by using several inverted atomic ensembles, introduced into the cavity sequentially by means of a transport mechanism. We simulate the light emission process using the Heisenberg-Langevin approach and study the frequency noise of the intracavity field. DOI: 10.1103/PhysRevA.87.013821
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Optical quantum simulation of Abelian gauge field using cold atomic ensembles coupled with arrays of optical cavities
    YiMin Liu
    RongWan Liu
    Science China Physics, Mechanics & Astronomy, 2014, 57 : 2259 - 2265
  • [32] Optical quantum simulation of Abelian gauge field using cold atomic ensembles coupled with arrays of optical cavities
    LIU Yi Min
    LIU Rong Wan
    Science China(Physics,Mechanics & Astronomy), 2014, Mechanics & Astronomy)2014 (12) : 2259 - 2265
  • [33] Optical pumping method to reduce light shift in a vapor cell atomic frequency standard
    Zhu, M.
    PROCEEDINGS OF THE 2007 IEEE INTERNATIONAL FREQUENCY CONTROL SYMPOSIUM-JOINTLY WITH THE 21ST EUROPEAN FREQUENCY AND TIME FORUM, VOLS 1-4, 2007, : 1334 - 1338
  • [34] Experimental study of a miniaturized calcium atomic beam tube for small optical frequency standard
    Chen, Haijun
    Liu, Zhongzheng
    Xiao, Shunlu
    Shang, Haosen
    Zhang, Shengnan
    Chen, Jingbiao
    2017 JOINT CONFERENCE OF THE EUROPEAN FREQUENCY AND TIME FORUM AND IEEE INTERNATIONAL FREQUENCY CONTROL SYMPOSIUM (EFTF/IFC), 2017, : 737 - 739
  • [36] Ca optical frequency standard
    Riehle, F
    Kersten, P
    Schnatz, H
    Trebst, T
    Zinner, G
    Helmcke, J
    LASER PHYSICS, 1998, 8 (03) : 664 - 669
  • [37] Extended precision measurements of a strontium single ion optical frequency standard and its development as an optical atomic clock
    Madej, A. A.
    Dube, P.
    Bernard, J. E.
    Shiner, A. D.
    Marmet, L.
    Jiang, J.
    Jones, D. J.
    2008 CONFERENCE ON PRECISION ELECTROMAGNETIC MEASUREMENTS DIGEST, 2008, : 92 - +
  • [38] The optical calcium frequency standard
    Riehle, F
    Schnatz, H
    Lipphardt, B
    Zinner, G
    Trebst, T
    Helmcke, J
    1998 CONFERENCE ON PRECISION ELECTROMAGNETIC MEASUREMENTS DIGEST, 1998, : 299 - 300
  • [39] The optical calcium frequency standard
    Riehle, F
    Schnatz, H
    Lipphardt, B
    Zinner, G
    Trebst, T
    Helmcke, J
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 1999, 48 (02) : 613 - 617
  • [40] Calcium optical frequency standard
    Riehle, F
    Schnatz, H
    Lipphardt, B
    Sterr, U
    Binnewies, T
    Wilpers, G
    Trebst, T
    Helmcke, J
    LASER FREQUENCY STABILIZATION, STANDARDS, MEASUREMENT AND APPLICATIONS, 2001, 4269 : 112 - 122