Active optical frequency standard using sequential coupling of atomic ensembles

被引:36
|
作者
Kazakov, G. A. [1 ,2 ]
Schumm, T. [1 ]
机构
[1] Vienna Univ Technol, Atominst, A-1020 Vienna, Austria
[2] St Petersburg State Polytech Univ, St Petersburg 195251, Russia
来源
PHYSICAL REVIEW A | 2013年 / 87卷 / 01期
基金
奥地利科学基金会;
关键词
PUMPING STATISTICS; LASER; DYNAMICS;
D O I
10.1103/PhysRevA.87.013821
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Recently, several theoretical proposals addressed the generation of an active optical frequency standard based on atomic ensembles trapped in an optical lattice potential inside an optical resonator. Using atoms with a narrow linewidth transition and population inversion together with a "bad" cavity allows us to realize the super-radiant photon emission regime. These schemes reduce the influence of mechanical or thermal vibrations of the cavity mirrors on the emitted optical frequency, overcoming current limitation in passive optical standards. The coherence time of the emitted light is ultimately limited by the lifetime of the atoms in the optical lattice potential. Therefore these schemes would produce one light pulse per atomic ensemble without a phase relation between pulses. Here we study how phase coherence between pulses can be maintained by using several inverted atomic ensembles, introduced into the cavity sequentially by means of a transport mechanism. We simulate the light emission process using the Heisenberg-Langevin approach and study the frequency noise of the intracavity field. DOI: 10.1103/PhysRevA.87.013821
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Entanglement of Atomic Qubits Using an Optical Frequency Comb
    Hayes, D.
    Matsukevich, D. N.
    Maunz, P.
    Hucul, D.
    Quraishi, Q.
    Olmschenk, S.
    Campbell, W.
    Mizrahi, J.
    Senko, C.
    Monroe, C.
    PHYSICAL REVIEW LETTERS, 2010, 104 (14)
  • [22] Experimental Constraint on Dark Matter-Standard Model Coupling with Optical Atomic Clocks
    Wcislo, P.
    Morzynski, P.
    Bober, M.
    Cygan, A.
    Lisak, D.
    Ciurylo, R.
    Zawada, M.
    2017 JOINT CONFERENCE OF THE EUROPEAN FREQUENCY AND TIME FORUM AND IEEE INTERNATIONAL FREQUENCY CONTROL SYMPOSIUM (EFTF/IFC), 2017, : 100 - 101
  • [23] Cooling of atomic ensembles in optical cavities: Semiclassical limit
    Schuetz, Stefan
    Habibian, Hessam
    Morigi, Giovanna
    PHYSICAL REVIEW A, 2013, 88 (03):
  • [24] Decoherence of Atomic Ensembles in Optical Lattice Clocks by Gravity
    Kawasaki, Akio
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2022, 91 (03)
  • [25] Optical Selection of Dark States of Multilevel Atomic Ensembles
    Kulagin A.V.
    Ozhigov Y.I.
    Computational Mathematics and Modeling, 2020, 31 (4) : 431 - 441
  • [26] Quantum telecloning of an optical coherent state to atomic ensembles
    Wang, Ming-Feng
    Wang, Yan-Wei
    Ni, Mang-Mang
    Zheng, Yi-Zhuang
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2008, 41 (22)
  • [27] All-optical manipulation of neutral atomic ensembles
    Hill, W. T., III
    Chattrapiban, N.
    Arakelyan, I. V.
    Mitra, S.
    Song, Y.
    OPTICAL TRAPPING AND OPTICAL MICROMANIPULATION IV, 2007, 6644
  • [28] ATOMIC CLOCK WITH SEQUENTIAL OPTICAL PUMPING
    ERNVEINP.J
    MALNAR, L
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE B, 1969, 268 (12): : 817 - &
  • [29] Free-Space Optical Time Transfer between an Atomic Frequency Standard and a Simple Optical Clock
    Bigelow, Matthew S.
    Guidice, Rafe
    Martin, Kyle
    Metcalf, Andrew J.
    Lemke, Nathan
    2019 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2019,
  • [30] Optical quantum simulation of Abelian gauge field using cold atomic ensembles coupled with arrays of optical cavities
    Liu YiMin
    Liu RongWan
    SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2014, 57 (12) : 2259 - 2265