Constructing sublinear expectations on path space

被引:75
|
作者
Nutz, Marcel [1 ]
van Handel, Ramon [2 ]
机构
[1] Columbia Univ, Dept Math, New York, NY 10027 USA
[2] Princeton Univ, Princeton, NJ 08544 USA
基金
美国国家科学基金会;
关键词
Sublinear expectation; G-expectation; Random G-expectation; Time-consistency; Optional sampling; Dynamic programming; Analytic set; G-BROWNIAN MOTION; STOCHASTIC CALCULUS; TIMES;
D O I
10.1016/j.spa.2013.03.022
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We provide a general construction of time-consistent sublinear expectations on the space of continuous paths. It yields the existence of the conditional G-expectation of a Borel-measurable (rather than quasi-continuous) random variable, a generalization of the random G-expectation, and an optional sampling theorem that holds without exceptional set. Our results also shed light on the inherent limitations to constructing sublinear expectations through aggregation. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:3100 / 3121
页数:22
相关论文
共 50 条
  • [31] Local Lipschitz-α Mappings and Applications to Sublinear Expectations
    Huai Xin CAO
    Jun Cheng YIN
    Zhi Hua GUO
    Zheng Li CHEN
    Acta Mathematica Sinica(English Series), 2014, 30 (05) : 844 - 860
  • [32] Moment bounds for IID sequences under sublinear expectations
    Feng Hu
    Science China Mathematics, 2011, 54 : 2155 - 2160
  • [33] Some inequalities and limit theorems under sublinear expectations
    Ze-Chun Hu
    Yan-Zhi Yang
    Acta Mathematicae Applicatae Sinica, English Series, 2017, 33 : 451 - 462
  • [34] Generalized Wasserstein Distance and Weak Convergence of Sublinear Expectations
    Li, Xinpeng
    Lin, Yiqing
    JOURNAL OF THEORETICAL PROBABILITY, 2017, 30 (02) : 581 - 593
  • [35] A Weighted Central Limit Theorem Under Sublinear Expectations
    Zhang, Defei
    Chen, Zengjing
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2014, 43 (03) : 566 - 577
  • [36] Moment bounds for IID sequences under sublinear expectations
    Hu Feng
    SCIENCE CHINA-MATHEMATICS, 2011, 54 (10) : 2155 - 2160
  • [37] PROKHOROV DISTANCE WITH RATES OF CONVERGENCE UNDER SUBLINEAR EXPECTATIONS
    Zhou, Q.
    Sakhanenko, A., I
    Guo, J.
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 2021, 65 (04) : 616 - 638
  • [38] Some Inequalities and Limit Theorems Under Sublinear Expectations
    Ze-Chun HU
    Yan-Zhi YANG
    ActaMathematicaeApplicataeSinica, 2017, 33 (02) : 451 - 462
  • [39] Limit theorems with rate of convergence under sublinear expectations
    Fang, Xiao
    Peng, Shige
    Shao, Qi-Man
    Song, Yongsheng
    BERNOULLI, 2019, 25 (4A) : 2564 - 2596
  • [40] General laws of large numbers under sublinear expectations
    Hu, Feng
    Chen, Zengjing
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2016, 45 (14) : 4215 - 4229