Constructing sublinear expectations on path space

被引:75
|
作者
Nutz, Marcel [1 ]
van Handel, Ramon [2 ]
机构
[1] Columbia Univ, Dept Math, New York, NY 10027 USA
[2] Princeton Univ, Princeton, NJ 08544 USA
基金
美国国家科学基金会;
关键词
Sublinear expectation; G-expectation; Random G-expectation; Time-consistency; Optional sampling; Dynamic programming; Analytic set; G-BROWNIAN MOTION; STOCHASTIC CALCULUS; TIMES;
D O I
10.1016/j.spa.2013.03.022
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We provide a general construction of time-consistent sublinear expectations on the space of continuous paths. It yields the existence of the conditional G-expectation of a Borel-measurable (rather than quasi-continuous) random variable, a generalization of the random G-expectation, and an optional sampling theorem that holds without exceptional set. Our results also shed light on the inherent limitations to constructing sublinear expectations through aggregation. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:3100 / 3121
页数:22
相关论文
共 50 条
  • [21] RELATIVE ENTROPY AND LARGE DEVIATIONS UNDER SUBLINEAR EXPECTATIONS
    Gao Fuqing
    Xu Mingzhou
    ACTA MATHEMATICA SCIENTIA, 2012, 32 (05) : 1826 - 1834
  • [22] Sublinear Expectations for Countable-State Uncertain Processes
    Erreygers, Alexander
    INTERNATIONAL SYMPOSIUM ON IMPRECISE PROBABILITY: THEORIES AND APPLICATIONS, VOL 215, 2023, 215 : 210 - 221
  • [23] Some inequalities and limit theorems under sublinear expectations
    Hu, Ze-Chun
    Yang, Yan-Zhi
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2017, 33 (02): : 451 - 462
  • [24] A general central limit theorem under sublinear expectations
    LI Min & SHI YuFeng School of Mathematics
    Science China(Mathematics), 2010, 53 (08) : 1989 - 1994
  • [25] Generalized Wasserstein Distance and Weak Convergence of Sublinear Expectations
    Xinpeng Li
    Yiqing Lin
    Journal of Theoretical Probability, 2017, 30 : 581 - 593
  • [26] Local Lipschitz-α mappings and applications to sublinear expectations
    Huai Xin Cao
    Jun Cheng Yin
    Zhi Hua Guo
    Zheng Li Chen
    Acta Mathematica Sinica, English Series, 2014, 30 : 844 - 860
  • [27] Convex bodies generated by sublinear expectations of random vectors
    Molchanov, Ilya
    Turin, Riccardo
    ADVANCES IN APPLIED MATHEMATICS, 2021, 131
  • [28] Convex bodies generated by sublinear expectations of random vectors
    Molchanov, Ilya
    Turin, Riccardo
    Advances in Applied Mathematics, 2021, 131
  • [29] G-Levy processes under sublinear expectations
    Hu, Mingshang
    Peng, Shige
    PROBABILITY UNCERTAINTY AND QUANTITATIVE RISK, 2021, 6 (01): : 1 - 22
  • [30] A strong law of large numbers under sublinear expectations
    Song, Yongsheng
    PROBABILITY UNCERTAINTY AND QUANTITATIVE RISK, 2023, 8 (03): : 333 - 350