Single-cell gene expression analysis reveals genetic associations masked in whole-tissue experiments

被引:170
|
作者
Wills, Quin F. [1 ]
Livak, Kenneth J. [2 ]
Tipping, Alex J. [3 ]
Enver, Tariq [3 ]
Goldson, Andrew J. [4 ]
Sexton, Darren W. [5 ]
Holmes, Chris [1 ,6 ,7 ,8 ]
机构
[1] Univ Oxford, Dept Stat, Oxford OX1 3TG, England
[2] Fluidigm Corp, San Francisco, CA USA
[3] UCL, UCL Canc Inst, Stem Cell Lab, London, England
[4] Univ E Anglia, Sch Biol Sci, UEA Flow Cytometry Serv, Biomed Res Ctr, Norwich NR4 7TJ, Norfolk, England
[5] Univ E Anglia, Norwich Med Sch, BioMed Res Ctr, Norwich NR4 7TJ, Norfolk, England
[6] Univ Oxford, Wellcome Trust Ctr Human Genet, Oxford, England
[7] Univ Oxford, Nuffield Dept Med, Oxford, England
[8] Med Res Council Harwell, Harwell, Berks, England
基金
英国工程与自然科学研究理事会; 英国医学研究理事会;
关键词
RNA;
D O I
10.1038/nbt.2642
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Gene expression in multiple individual cells from a tissue or culture sample varies according to cell-cycle, genetic, epigenetic and stochastic differences between the cells. However, single-cell differences have been largely neglected in the analysis of the functional consequences of genetic variation. Here we measure the expression of 92 genes affected by Wnt signaling in 1,440 single cells from 15 individuals to associate single-nucleotide polymorphisms (SNPs) with gene-expression phenotypes, while accounting for stochastic and cell-cycle differences between cells. We provide evidence that many heritable variations in gene function-such as burst size, burst frequency, cell cycle-specific expression and expression correlation/noise between cells-are masked when expression is averaged over many cells. Our results demonstrate how single-cell analyses provide insights into the mechanistic and network effects of genetic variability, with improved statistical power to model these effects on gene expression.
引用
收藏
页码:748 / +
页数:6
相关论文
共 50 条
  • [41] Single-cell gene expression profiling
    Levsky, JM
    Shenoy, SM
    Pezo, RC
    Singer, RH
    SCIENCE, 2002, 297 (5582) : 836 - 840
  • [42] Dynamics of single-cell gene expression
    Longo, Diane
    Hasty, Jeff
    MOLECULAR SYSTEMS BIOLOGY, 2006, 2 (1)
  • [43] Laser microdissection: gene expression analysis at the single-cell level
    Burgemeister, Renate
    Friedemann, Gabi
    Schlieben, Sigrid
    Hitzler, Hermine
    NATURE METHODS, 2007, : AN24 - AN25
  • [44] Integrated microfluidic bioprocessor for single-cell gene expression analysis
    Toriello, Nicholas M.
    Douglas, Erik S.
    Thaitrong, Numrin
    Hsiao, Sonny C.
    Francis, Matthew B.
    Bertozzi, Carolyn R.
    Mathies, Richard A.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (51) : 20173 - 20178
  • [45] Differential variability analysis of single-cell gene expression data
    Liu, Jiayi
    Kreimer, Anat
    Li, Wei Vivian
    BRIEFINGS IN BIOINFORMATICS, 2023, 24 (05)
  • [46] Prediction of single-cell gene expression for transcription factor analysis
    Ardakani, Fatemeh Behjati
    Kattler, Kathrin
    Heinen, Tobias
    Schmidt, Florian
    Feuerborn, David
    Gasparoni, Gilles
    Lepikhov, Konstantin
    Nell, Patrick
    Hengstler, Jan
    Walter, Joern
    Schulz, Marcel H.
    GIGASCIENCE, 2020, 9 (11):
  • [47] Single-cell analysis reveals transcriptional dynamics in healthy primary parathyroid tissue
    Venkat, Aarthi
    Carlino, Maximillian J.
    Lawton, Betty R.
    Prasad, Manju L.
    Amodio, Matthew
    Gibson, Courtney E.
    Zeiss, Caroline J.
    Youlten, Scott E.
    Krishnaswamy, Smita
    Krause, Diane S.
    GENOME RESEARCH, 2024, 34 (06) : 837 - 850
  • [48] Single-cell RNA-seq reveals cell type-specific molecular and genetic associations to lupus
    Perez, Richard K.
    Gordon, M. Grace
    Subramaniam, Meena
    Kim, Min Cheol
    Hartoularos, George C.
    Targ, Sasha
    Sun, Yang
    Ogorodnikov, Anton
    Bueno, Raymund
    Lu, Andrew
    Thompson, Mike
    Rappoport, Nadav
    Dahl, Andrew
    Lanata, Cristina M.
    Matloubian, Mehrdad
    Maliskova, Lenka
    Kwek, Serena S.
    Li, Tony
    Slyper, Michal
    Waldman, Julia
    Dionne, Danielle
    Rozenblatt-Rosen, Orit
    Fong, Lawrence
    Dall'Era, Maria
    Balliu, Brunilda
    Regev, Aviv
    Yazdany, Jinoos
    Criswell, Lindsey A.
    Zaitlen, Noah
    Ye, Chun Jimmie
    SCIENCE, 2022, 376 (6589) : 153 - +
  • [49] Single-Cell Analysis Reveals Regulatory Gene Expression Dynamics Leading to Lineage Commitment in Early T Cell Development
    Zhou, Wen
    Yui, Mary A.
    Williams, Brian A.
    Yun, Jina
    Wold, Barbara J.
    Cai, Long
    Rothenberg, Ellen V.
    CELL SYSTEMS, 2019, 9 (04) : 321 - +
  • [50] Single-cell gene expression reveals a landscape of regulatory T cell phenotypes shaped by the TCR
    Zemmour, David
    Zilionis, Rapolas
    Kiner, Evgeny
    Klein, Allon M.
    Mathis, Diane
    Benoist, Christophe
    NATURE IMMUNOLOGY, 2018, 19 (03) : 291 - +