Single-cell gene expression analysis reveals genetic associations masked in whole-tissue experiments

被引:170
|
作者
Wills, Quin F. [1 ]
Livak, Kenneth J. [2 ]
Tipping, Alex J. [3 ]
Enver, Tariq [3 ]
Goldson, Andrew J. [4 ]
Sexton, Darren W. [5 ]
Holmes, Chris [1 ,6 ,7 ,8 ]
机构
[1] Univ Oxford, Dept Stat, Oxford OX1 3TG, England
[2] Fluidigm Corp, San Francisco, CA USA
[3] UCL, UCL Canc Inst, Stem Cell Lab, London, England
[4] Univ E Anglia, Sch Biol Sci, UEA Flow Cytometry Serv, Biomed Res Ctr, Norwich NR4 7TJ, Norfolk, England
[5] Univ E Anglia, Norwich Med Sch, BioMed Res Ctr, Norwich NR4 7TJ, Norfolk, England
[6] Univ Oxford, Wellcome Trust Ctr Human Genet, Oxford, England
[7] Univ Oxford, Nuffield Dept Med, Oxford, England
[8] Med Res Council Harwell, Harwell, Berks, England
基金
英国工程与自然科学研究理事会; 英国医学研究理事会;
关键词
RNA;
D O I
10.1038/nbt.2642
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Gene expression in multiple individual cells from a tissue or culture sample varies according to cell-cycle, genetic, epigenetic and stochastic differences between the cells. However, single-cell differences have been largely neglected in the analysis of the functional consequences of genetic variation. Here we measure the expression of 92 genes affected by Wnt signaling in 1,440 single cells from 15 individuals to associate single-nucleotide polymorphisms (SNPs) with gene-expression phenotypes, while accounting for stochastic and cell-cycle differences between cells. We provide evidence that many heritable variations in gene function-such as burst size, burst frequency, cell cycle-specific expression and expression correlation/noise between cells-are masked when expression is averaged over many cells. Our results demonstrate how single-cell analyses provide insights into the mechanistic and network effects of genetic variability, with improved statistical power to model these effects on gene expression.
引用
收藏
页码:748 / +
页数:6
相关论文
共 50 条
  • [31] Single-cell Profiling of B and T Cell Repertoire and Gene Expression in the RA Synovium Reveals Tissue Specific Clonal Expansion
    Meednu, Nida
    Wagner, Aaron
    Dunlap, Garett
    Zhang, Fan
    Jonsson, Anna Helena
    Wei, Kevin
    Utz, Paul
    Robinson, William
    Maecker, Holden
    James, Judith
    Guthridge, Joel
    Bridges, S. Louis, Jr.
    Bykerk, Vivian
    Donlin, Laura
    Goodman, Susan
    DiCarlo, Edward
    Ritchlin, Christopher
    Tabechian, Darren
    Lederer, James
    Gravallese, Ellen
    McGeachy, Mandy
    Firestein, Gary
    Boyle, David
    Gregersen, Peter
    Horowitz, Diane
    Perlman, Harris
    Mandelin, Arthur
    Bathon, Joan
    Geraldino--Pardilla, Laura
    Hughes, Laura
    Holers, V. Michael
    Deane, Kevin
    Moreland, Larry
    Filer, Andrew
    Pitzalis, Costantino
    Forbess, Lindsy
    Ben-Artzi, Ami
    Salomon-Escoto, Karen
    Raychaudhuri, Soumya
    Brenner, Michael
    Rao, Deepak
    McDavid, Andrew
    Anolik, Jennifer
    Medicines, Accelerating
    ARTHRITIS & RHEUMATOLOGY, 2021, 73 : 951 - 952
  • [32] Single-cell Transcriptomics Reveals Dynamic Cell Populations and Differential Gene Expression Patterns in Control and Aneurysmal Human Aortic Tissue
    Li, Yanming
    Ren, Pingping
    Dawson, Ashley
    Vasquez, Hernan
    Ageedi, Waleed
    Zhang, Chen
    Luo, Wei
    Chen, Rui
    Li, Yumei
    Kim, Sangbae
    Lu, Hong S.
    Cassis, Lisa A.
    Coselli, Joseph S.
    Daugherty, Alan
    Shen, Ying H.
    Lemaire, Scott A.
    ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 2020, 40
  • [33] Single-cell analysis reveals cellular heterogeneity, gene expression profiles, and pathway dynamics in acne vulgaris
    Yang, Xiaoyi
    Wang, Xiaoyan
    Yang, Jiankang
    ARCHIVES OF DERMATOLOGICAL RESEARCH, 2025, 317 (01)
  • [34] Single-Cell Transcriptome Analysis Reveals Paraspeckles Expression in Osteosarcoma Tissues
    Rothzerg, Emel
    Feng, Wenyu
    Song, Dezhi
    Li, Hengyuan
    Wei, Qingjun
    Fox, Archa
    Wood, David
    Xu, Jiake
    Liu, Yun
    CANCER INFORMATICS, 2022, 21
  • [35] Single-Cell Analysis Reveals Distinct Gene Expression and Heterogeneity in Male and Female Plasmodium falciparum Gametocytes
    Walzer, Katelyn A.
    Kubicki, Danielle M.
    Tang, Xiaohu
    Chi, Jen-Tsan Ashley
    MSPHERE, 2018, 3 (02):
  • [36] Analysis of single-cell transcriptomes reveals gene expression states that drive key transitions in cellular subpopulations
    May, A. P.
    Shuga, J.
    Chen, P.
    Wang, X.
    Wang, J.
    Leyrat, A.
    Weaver, S.
    MOLECULAR BIOLOGY OF THE CELL, 2012, 23
  • [37] Single-cell transcriptome analysis reveals widespread monoallelic gene expression in individual rice mesophyll cells
    Yingying Han
    Xiao Chu
    Haopeng Yu
    Ying-Ke Ma
    Xiu-Jie Wang
    Wenfeng Qian
    Yuling Jiao
    Science Bulletin, 2017, 62 (19) : 1304 - 1314
  • [38] Single-cell transcriptome analysis reveals widespread monoallelic gene expression in individual rice mesophyll cells
    Han, Yingying
    Chu, Xiao
    Yu, Haopeng
    Ma, Ying-Ke
    Wang, Xiu-Jie
    Qian, Wenfeng
    Jiao, Yuling
    SCIENCE BULLETIN, 2017, 62 (19) : 1304 - 1314
  • [39] Single-cell gene and isoform expression analysis reveals signatures of ageing in haematopoietic stem and progenitor cells
    Mincarelli, Laura
    Uzun, Vladimir
    Wright, David
    Scoones, Anita
    Rushworth, Stuart A.
    Haerty, Wilfried
    Macaulay, Iain C.
    COMMUNICATIONS BIOLOGY, 2023, 6 (01)
  • [40] Single-cell gene and isoform expression analysis reveals signatures of ageing in haematopoietic stem and progenitor cells
    Laura Mincarelli
    Vladimir Uzun
    David Wright
    Anita Scoones
    Stuart A. Rushworth
    Wilfried Haerty
    Iain C. Macaulay
    Communications Biology, 6