Single-cell gene expression analysis reveals genetic associations masked in whole-tissue experiments

被引:170
|
作者
Wills, Quin F. [1 ]
Livak, Kenneth J. [2 ]
Tipping, Alex J. [3 ]
Enver, Tariq [3 ]
Goldson, Andrew J. [4 ]
Sexton, Darren W. [5 ]
Holmes, Chris [1 ,6 ,7 ,8 ]
机构
[1] Univ Oxford, Dept Stat, Oxford OX1 3TG, England
[2] Fluidigm Corp, San Francisco, CA USA
[3] UCL, UCL Canc Inst, Stem Cell Lab, London, England
[4] Univ E Anglia, Sch Biol Sci, UEA Flow Cytometry Serv, Biomed Res Ctr, Norwich NR4 7TJ, Norfolk, England
[5] Univ E Anglia, Norwich Med Sch, BioMed Res Ctr, Norwich NR4 7TJ, Norfolk, England
[6] Univ Oxford, Wellcome Trust Ctr Human Genet, Oxford, England
[7] Univ Oxford, Nuffield Dept Med, Oxford, England
[8] Med Res Council Harwell, Harwell, Berks, England
基金
英国工程与自然科学研究理事会; 英国医学研究理事会;
关键词
RNA;
D O I
10.1038/nbt.2642
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Gene expression in multiple individual cells from a tissue or culture sample varies according to cell-cycle, genetic, epigenetic and stochastic differences between the cells. However, single-cell differences have been largely neglected in the analysis of the functional consequences of genetic variation. Here we measure the expression of 92 genes affected by Wnt signaling in 1,440 single cells from 15 individuals to associate single-nucleotide polymorphisms (SNPs) with gene-expression phenotypes, while accounting for stochastic and cell-cycle differences between cells. We provide evidence that many heritable variations in gene function-such as burst size, burst frequency, cell cycle-specific expression and expression correlation/noise between cells-are masked when expression is averaged over many cells. Our results demonstrate how single-cell analyses provide insights into the mechanistic and network effects of genetic variability, with improved statistical power to model these effects on gene expression.
引用
收藏
页码:748 / +
页数:6
相关论文
共 50 条
  • [1] Single-cell gene expression analysis reveals genetic associations masked in whole-tissue experiments
    Quin F Wills
    Kenneth J Livak
    Alex J Tipping
    Tariq Enver
    Andrew J Goldson
    Darren W Sexton
    Chris Holmes
    Nature Biotechnology, 2013, 31 : 748 - 752
  • [2] Whole-Tissue Three-Dimensional Imaging of Rice at Single-Cell Resolution
    Sato, Moeko
    Akashi, Hiroko
    Sakamoto, Yuki
    Matsunaga, Sachihiro
    Tsuji, Hiroyuki
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (01)
  • [3] Single-cell multiomics analysis reveals cell/tissue-specific associations in bipolar disorder
    Wei, Wenming
    Cheng, Bolun
    Yang, Xuena
    Chu, Xiaoge
    He, Dan
    Qin, Xiaoyue
    Zhang, Na
    Zhao, Yijing
    Shi, Sirong
    Cai, Qingqing
    Hui, Jingni
    Wen, Yan
    Liu, Huan
    Jia, Yumeng
    Zhang, Feng
    TRANSLATIONAL PSYCHIATRY, 2024, 14 (01):
  • [4] Single-cell sequencing reveals dissociation-induced gene expression in tissue subpopulations
    van den Brink, Susanne C.
    Sage, Fanny
    Vertesy, Abel
    Spanjaard, Bastiaan
    Peterson-Maduro, Josi
    Baron, Chloe S.
    Robin, Catherine
    van Oudenaarden, Alexander
    NATURE METHODS, 2017, 14 (10) : 935 - 936
  • [5] Single-cell sequencing reveals dissociation-induced gene expression in tissue subpopulations
    Susanne C van den Brink
    Fanny Sage
    Ábel Vértesy
    Bastiaan Spanjaard
    Josi Peterson-Maduro
    Chloé S Baron
    Catherine Robin
    Alexander van Oudenaarden
    Nature Methods, 2017, 14 : 935 - 936
  • [6] Single-cell gene expression analysis
    Richardson, PJ
    Lee, K
    RADIATION RESEARCH, 2001, 156 (04) : 435 - 435
  • [7] Bifurcation analysis of single-cell gene expression data reveals epigenetic landscape
    Marco, Eugenio
    Karp, Robert L.
    Guo, Guoji
    Robson, Paul
    Hart, Adam H.
    Trippa, Lorenzo
    Yuan, Guo-Cheng
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (52) : E5643 - E5650
  • [8] Single-cell gene expression analysis reveals diversity among human spermatogonia
    Neuhaus, N.
    Yoon, J.
    Terwort, N.
    Kliesch, S.
    Seggewiss, J.
    Huge, A.
    Voss, R.
    Schlatt, S.
    Grindberg, R. V.
    Schoeler, R.
    MOLECULAR HUMAN REPRODUCTION, 2017, 23 (02) : 79 - 90
  • [9] Microgenomics: gene expression analysis at the tissue-specific and single-cell levels
    Brandt, SP
    JOURNAL OF EXPERIMENTAL BOTANY, 2005, 56 (412) : 495 - 505
  • [10] Single-Cell Transcriptome Analysis Reveals Dynamic Cell Populations and Differential Gene Expression Patterns in Control and Aneurysmal Human Aortic Tissue
    Li, Yanming
    Ren, Pingping
    Dawson, Ashley
    Vasquez, Hernan G.
    Ageedi, Waleed
    Zhang, Chen
    Luo, Wei
    Chen, Rui
    Li, Yumei
    Kim, Sangbae
    Lu, Hong S.
    Cassis, Lisa A.
    Coselli, Joseph S.
    Daugherty, Alan
    Shen, Ying H.
    LeMaire, Scott A.
    CIRCULATION, 2020, 142 (14) : 1374 - 1388