Invertibility of the biharmonic single layer potential operator

被引:39
|
作者
Costabel, M [1 ]
Dauge, M [1 ]
机构
[1] UNIV RENNES 1,F-35042 RENNES 03,FRANCE
关键词
D O I
10.1007/BF01195484
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The 2 x 2 system of integral equations corresponding to the biharmonic single layer potential in R(2) is known to be strongly elliptic. It is also known to be positive definite on a space of functions orthogonal to polynomials of degree one. We study the question of its unique solvability without this orthogonality condition. To each curve Gamma, we associate a 4 x 4 matrix B-Gamma such that this problem for the family of all curves obtained from Gamma by scale transformations is equivalent to the eigenvalue problem for B-Gamma. We present numerical approximations for this eigenvalue problem for several classes of curves.
引用
收藏
页码:46 / 67
页数:22
相关论文
共 50 条
  • [41] Consistent invertibility of upper triangular operator matrices
    Hai, Guojun
    Chen, Alatancang
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 455 : 22 - 31
  • [42] Drazin invertibility of upper triangular operator matrices
    Boumazgour, Mohamed
    LINEAR & MULTILINEAR ALGEBRA, 2013, 61 (05): : 627 - 634
  • [43] ON INVERTIBILITY OF DUHAMEL OPERATOR IN SPACES OF ULTRADIFFERENTIABLE FUNCTIONS
    Ivanova, O. A.
    Melikhov, S. N.
    UFA MATHEMATICAL JOURNAL, 2023, 15 (04): : 62 - 75
  • [44] Drazin invertibility of upper triangular operator matrices
    Cvetkovic-Ilic, D. S.
    Pavlovic, V.
    LINEAR & MULTILINEAR ALGEBRA, 2018, 66 (02): : 260 - 267
  • [45] ON THE SPECTRUM OF THE BIHARMONIC OPERATOR IN A BOUNDED DOMAIN
    LEUNG, PF
    LI, LC
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1985, 31 (01) : 83 - 88
  • [46] Invertibility of 2 x 2 operator matrices
    Huang, Junjie
    Sun, Junfeng
    Chen, Alatancang
    Trunk, Carsten
    MATHEMATISCHE NACHRICHTEN, 2019, 292 (11) : 2411 - 2426
  • [47] EXACT ESTIMATES OF EIGENFUCTIONS OF A BIHARMONIC OPERATOR
    SHISHMAR.IA
    DOKLADY AKADEMII NAUK SSSR, 1966, 170 (04): : 790 - &
  • [48] A Spectral Sobolev Problem for the Biharmonic Operator
    A. Yu. Savin
    E. N. Semenova
    Lobachevskii Journal of Mathematics, 2023, 44 : 950 - 955
  • [49] A note on the Neumann eigenvalues of the biharmonic operator
    Provenzano, Luigi
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (03) : 1005 - 1012
  • [50] On a conjecture for an overdetermined problem for the biharmonic operator
    Goyal, V.
    Schaefer, P. W.
    APPLIED MATHEMATICS LETTERS, 2008, 21 (04) : 421 - 424