A note on the Neumann eigenvalues of the biharmonic operator

被引:12
|
作者
Provenzano, Luigi [1 ]
机构
[1] Univ Padua, Dipartimento Matemat, Via Trieste 63, I-35126 Padua, Italy
关键词
biharmonic operator; Neumann boundary conditions; eigenvalues; Poisson's ratio; SPECTRAL STABILITY; ELLIPTIC-OPERATORS; PERTURBATIONS; DOMAINS;
D O I
10.1002/mma.4063
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the dependence of the eigenvalues of the biharmonic operator subject to Neumann boundary conditions on the Poisson's ratio sigma. In particular, we prove that the Neumann eigenvalues are Lipschitz continuous with respect to sigma[0,1[and that all the Neumann eigenvalues tend to zero as sigma 1(-). Moreover, we show that the Neumann problem defined by setting sigma = 1 admits a sequence of positive eigenvalues of finite multiplicity that are not limiting points for the Neumann eigenvalues with sigma[0,1[as sigma 1(-) and that coincide with the Dirichlet eigenvalues of the biharmonic operator. Copyright (c) 2016 John Wiley & Sons, Ltd.
引用
收藏
页码:1005 / 1012
页数:8
相关论文
共 50 条