A note on the Neumann eigenvalues of the biharmonic operator

被引:12
|
作者
Provenzano, Luigi [1 ]
机构
[1] Univ Padua, Dipartimento Matemat, Via Trieste 63, I-35126 Padua, Italy
关键词
biharmonic operator; Neumann boundary conditions; eigenvalues; Poisson's ratio; SPECTRAL STABILITY; ELLIPTIC-OPERATORS; PERTURBATIONS; DOMAINS;
D O I
10.1002/mma.4063
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the dependence of the eigenvalues of the biharmonic operator subject to Neumann boundary conditions on the Poisson's ratio sigma. In particular, we prove that the Neumann eigenvalues are Lipschitz continuous with respect to sigma[0,1[and that all the Neumann eigenvalues tend to zero as sigma 1(-). Moreover, we show that the Neumann problem defined by setting sigma = 1 admits a sequence of positive eigenvalues of finite multiplicity that are not limiting points for the Neumann eigenvalues with sigma[0,1[as sigma 1(-) and that coincide with the Dirichlet eigenvalues of the biharmonic operator. Copyright (c) 2016 John Wiley & Sons, Ltd.
引用
收藏
页码:1005 / 1012
页数:8
相关论文
共 50 条
  • [41] A DISTRIBUTION OF FINITE-MULTIPLICITY EIGENVALUES OF NEUMANN EXTENSIONS OF AN ELLIPTIC OPERATOR
    MIKHAILETS, VA
    [J]. DIFFERENTIAL EQUATIONS, 1994, 30 (01) : 167 - 168
  • [42] Ultracontractivity and Eigenvalues: Weyl’s Law for the Dirichlet-to-Neumann Operator
    W. Arendt
    A. F. M. ter Elst
    [J]. Integral Equations and Operator Theory, 2017, 88 : 65 - 89
  • [43] Three solutions to a Neumann boundary value problem driven by p(x)-biharmonic operator
    Zakaria El Allali
    Mohamed Karim Hamdani
    Said Taarabti
    [J]. Journal of Elliptic and Parabolic Equations, 2024, 10 : 195 - 209
  • [44] Three solutions to a Neumann boundary value problem driven by p(x)-biharmonic operator
    Allali, Zakaria El
    Hamdani, Mohamed Karim
    Taarabti, Said
    [J]. JOURNAL OF ELLIPTIC AND PARABOLIC EQUATIONS, 2024, 10 (01) : 195 - 209
  • [45] A sharp estimate for Neumann eigenvalues of the Laplace-Beltrami operator for domains in a hemisphere
    Benguria, Rafael D.
    Brandolini, Barbara
    Chiacchio, Francesco
    [J]. COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2020, 22 (03)
  • [46] Biharmonic Green function and biharmonic Neumann function in a sector
    Wang, Ying
    Ye, Liuqing
    [J]. COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2013, 58 (01) : 7 - 22
  • [47] Convergence rate for eigenvalues of the elastic Neumann-Poincare operator in two dimensions
    Ando, Kazunori
    Kang, Hyeonbae
    Miyanishi, Yoshihisa
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2020, 140 : 211 - 229
  • [48] A DECAY ESTIMATE FOR THE EIGENVALUES OF THE NEUMANN-POINCARE OPERATOR USING THE GRUNSKY COEFFICIENTS
    Jung, Younghoon
    Lim, Mikyoung
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 148 (02) : 591 - 600
  • [49] ASYMPTOTICS OF EIGENVALUES OF DIRICHLET AND NEUMANN PROBLEMS FOR ABSTRACT STURM-LIOUVILLE OPERATOR
    GEKHTMAN, MM
    [J]. MATHEMATICAL NOTES, 1977, 21 (1-2) : 117 - 118
  • [50] A note concerning the modular valued von Neumann interaction operator
    Parks, A. D.
    Spence, S. E.
    Farinholt, J. M.
    [J]. QUANTUM STUDIES-MATHEMATICS AND FOUNDATIONS, 2019, 6 (01) : 101 - 105