Normal Criterion Concerning Shared Values

被引:0
|
作者
Chen, Wei [1 ]
Zhang, Yingying [1 ]
Zeng, Jiwen [2 ]
Tian, Honggen [1 ]
机构
[1] Xinjiang Normal Univ, Sch Math Sci, Xinjiang 830054, Urumqi, Peoples R China
[2] Xiamen Univ, Sch Math Sci, Xiamen 361105, Fujian, Peoples R China
关键词
FAMILIES;
D O I
10.1155/2012/312324
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study normal criterion of meromorphic functions shared values, we obtain the following. Let F be a family of meromorphic functions in a domain D, such that function f is an element of F has zeros of multiplicity at least 2, there exists nonzero complex numbers b(f), c(f) depending on f satisfying (i) b(f)/c(f) is a constant; (ii) min{sigma(0, b(f) ), sigma(0,c(f)), sigma(b(f), c(f) ) >= m} for some m > 0; (iii) (1/c(f)(k-1)) (f(1))(k) (z) + f (z) not equal b(f)(k)/c(f)(k-1) or (1/c(f)(k-1)) (f(1))(k) (z) + f(z) = (b(f)(k)/c(f)(k-1) double right arrow f(z) = b(f), then F is normal. These results improve some earlier previous results.
引用
收藏
页数:7
相关论文
共 50 条