Normality concerning shared values

被引:2
|
作者
Chang JianMing [1 ]
机构
[1] Changshu Inst Technol, Dept Math, Changshu 215500, Peoples R China
来源
SCIENCE IN CHINA SERIES A-MATHEMATICS | 2009年 / 52卷 / 08期
基金
中国国家自然科学基金;
关键词
meromorphic function; holomorphic functions; normal family; MEROMORPHIC FUNCTIONS; NORMAL-FAMILIES;
D O I
10.1007/s11425-008-0172-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let F be a family of meromorphic functions in a plane domain D, and a and b be finite non-zero complex values such that a/b is not an element of N \ {1}. If for every f is an element of F, f(z) = a double right arrow f'(z) = a and f'(z) = b double right arrow f ''(z) = b, then F is normal. We also construct a non-normal family F of meromorphic functions in the unit disk Delta = {vertical bar z vertical bar < 1} such that for every f is an element of F, f(z) = m + 1 double left right arrow f'(z) = m + 1 and f'(z) = 1 double left right arrow f ''(z) = 1 in Delta, where m is a given positive integer. This answers Problem 5.1 in the works of Gu, Pang and Fang.
引用
收藏
页码:1717 / 1722
页数:6
相关论文
共 50 条