Application of genomics-assisted breeding for generation of climate resilient crops: progress and prospects

被引:170
|
作者
Kole, Chittaranjan [1 ]
Muthamilarasan, Mehanathan [2 ]
Henry, Robert [3 ]
Edwards, David [4 ]
Sharma, Rishu [5 ]
Abberton, Michael [6 ]
Batley, Jacqueline [7 ]
Bentley, Alison [8 ]
Blakeney, Michael [9 ]
Bryant, John [10 ]
Cai, Hongwei [11 ,12 ]
Cakir, Mehmet [13 ]
Cseke, Leland J. [14 ]
Cockram, James [8 ]
de Oliveira, Antonio Costa [15 ]
De Pace, Ciro [16 ]
Dempewolf, Hannes [17 ]
Ellison, Shelby [18 ]
Gepts, Paul [19 ]
Greenland, Andy [8 ]
Hall, Anthony [20 ]
Hori, Kiyosumi [21 ]
Hughes, Stephen [22 ]
Humphreys, Mike W. [23 ]
Iorizzo, Massimo [18 ]
Ismail, Abdelbagi M. [24 ]
Marshall, Athole [23 ]
Mayes, Sean [25 ]
Nguyen, Henry T. [26 ,27 ]
Ogbonnaya, Francis C. [28 ]
Ortiz, Rodomiro [29 ]
Paterson, Andrew H. [30 ]
Simon, Philipp W. [31 ]
Tohme, Joe [32 ]
Tuberosa, Roberto [33 ]
Valliyodan, Babu [26 ,27 ]
Varshney, Rajeev K. [34 ]
Wullschleger, Stan D. [35 ]
Yano, Masahiro [36 ]
Prasad, Manoj [2 ]
机构
[1] Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, India
[2] Natl Inst Plant Genome Res, Dept Plant Mol Genet & Genom, New Delhi 110067, India
[3] Univ Queensland, Queensland Alliance Agr & Food Innovat, St Lucia, Qld, Australia
[4] Univ Queensland, Sch Agr & Food Sci, Brisbane, Qld, Australia
[5] Bidhan Chandra Krishi Viswavidyalaya, Fac Agr, Dept Plant Pathol, Mohanpur, India
[6] Int Inst Trop Agr, Genet Resources Ctr, Ibadan, Nigeria
[7] Univ Queensland, Ctr Integrated Legume Res, Brisbane, Qld, Australia
[8] Natl Inst Agr Bot, John Bingham Lab, Cambridge, England
[9] Univ Western Australia, Sch Law, Perth, WA 6009, Australia
[10] Univ Exeter, Hatherly Labs, CLES, Exeter, Devon, England
[11] Japan Grassland Agr & Forage Seed Assoc, Forage Crop Res Inst, Nasushiobara, Japan
[12] China Agr Univ, Coll Agron & Biotechnol, Dept Plant Genet & Breeding, Beijing 100094, Peoples R China
[13] Murdoch Univ, Sch Biol Sci & Biotechnol, Fac Sci & Engn, Murdoch, WA 6150, Australia
[14] Univ Alabama, Dept Biol Sci, Huntsville, AL 35899 USA
[15] Univ Fed Pelotas, Plant Genom & Breeding Ctr, Pelotas, Brazil
[16] Univ Tuscia, Dept Agr Forests Nat & Energy, Viterbo, Italy
[17] Global Crop Divers Trust, Bonn, Germany
[18] Univ Wisconsin, Dept Hort, Madison, WI 53706 USA
[19] Univ Calif Davis, Dept Plant Sci, Sect Crop & Ecosyst Sci, Davis, CA 95616 USA
[20] Univ Calif Riverside, Dept Bot & Plant Sci, Riverside, CA 92521 USA
[21] Natl Inst Agrobiol Sci, Agrogen Res Ctr, Tsukuba, Ibaraki, Japan
[22] Univ Exeter, Exeter, Devon, England
[23] Aberystwyth Univ, Inst Biol Environm & Rural Sci, Aberystwyth, Ceredigion, Wales
[24] Int Rice Res Inst, Manila 1099, Philippines
[25] Crops Future, Biotechnol & Crop Genet, Semenyih, Malaysia
[26] Univ Missouri, Natl Ctr Soybean Biotechnol, Columbia, MO USA
[27] Univ Missouri, Div Plant Sci, Columbia, MO USA
[28] Grains Res & Dev Corp, Kingston, ACT, Australia
[29] Swedish Univ Agr Sci, Dept Plant Breeding, Sundvagen, Sweden
[30] Univ Georgia, Plant Genome Mapping Lab, Athens, GA 30602 USA
[31] Univ Wisconsin, Dept Hort, USDA, ARS, Madison, WI 53706 USA
[32] Ctr Int Agr Trop, Agrobiodivers & Biotechnol Project, Cali, Colombia
[33] Dept Agr Sci, Bologna, Italy
[34] Int Crops Res Inst Semi Arid Trop, Ctr Excellence Genom, Patancheru 502324, Andhra Pradesh, India
[35] Oak Ridge Natl Lab, Div Environm Sci, Climate Change Sci Inst, Oak Ridge, TN 37831 USA
[36] Natl Agr & Food Res Org, Inst Crop Sci, Tsukuba, Ibaraki, Japan
来源
基金
英国生物技术与生命科学研究理事会;
关键词
climate change; crop improvement; stress tolerance; breeding; genomics; QUANTITATIVE TRAIT LOCI; SCALE GENOTYPING APPLICATIONS; ADVENTITIOUS ROOT-FORMATION; ABSCISIC-ACID ACCUMULATION; DROUGHT-RESISTANCE; FOXTAIL MILLET; FROST-TOLERANCE; DRAFT GENOME; MAPPING QTLS; GRAIN-YIELD;
D O I
10.3389/fpls.2015.00563
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Climate change affects agricultural productivity worldwide. Increased prices of food commodities are the initial indication of drastic edible yield loss, which is expected to increase further due to global warming. This situation has compelled plant scientists to develop climate change-resilient crops, which can withstand broad-spectrum stresses such as drought, heat, cold, salinity, flood, submergence and pests, thus helping to deliver increased productivity. Genomics appears to be a promising tool for deciphering the stress responsiveness of crop species with adaptation traits or in wild relatives toward identifying underlying genes, alleles or quantitative trait loci. Molecular breeding approaches have proven helpful in enhancing the stress adaptation of crop plants, and recent advances in high-throughput sequencing and phenotyping platforms have transformed molecular breeding to genomics-assisted breeding (GAB). In view of this, the present review elaborates the progress and prospects of GAB for improving climate change resilience in crops, which is likely to play an ever increasing role in the effort to ensure global food security.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Genomics-assisted breeding in minor and pseudo-cereals
    Yabe, Shiori
    Iwata, Hiroyoshi
    BREEDING SCIENCE, 2020, 70 (01) : 19 - 31
  • [22] Analytical and Decision Support Tools for Genomics-Assisted Breeding
    Varshney, Rajeev K.
    Singh, Vikas K.
    Hickey, John M.
    Xun, Xu
    Marshall, David F.
    Wang, Jun
    Edwards, David
    Ribaut, Jean-Marcel
    TRENDS IN PLANT SCIENCE, 2016, 21 (04) : 354 - 363
  • [23] Genomics-assisted breeding——A revolutionary strategy for crop improvement
    LENG Peng-fei
    Thomas Lübberstedt
    XU Ming-liang
    JournalofIntegrativeAgriculture, 2017, 16 (12) : 2674 - 2685
  • [24] IonBreeders: bioinformatics plugins toward genomics-assisted breeding
    Ogiso-Tanaka, Eri
    Yabe, Shiori
    Tanaka, Tsuyoshi
    BREEDING SCIENCE, 2020, 70 (03) : 396 - 401
  • [25] Designing future peanut: the power of genomics-assisted breeding
    Ali Raza
    Hua Chen
    Chong Zhang
    Yuhui Zhuang
    Yasir Sharif
    Tiecheng Cai
    Qiang Yang
    Pooja Soni
    Manish K. Pandey
    Rajeev K. Varshney
    Weijian Zhuang
    Theoretical and Applied Genetics, 2024, 137
  • [26] Genomics-assisted breeding for ear rot resistances and reduced mycotoxin contamination in maize: methods, advances and prospects
    David Sewordor Gaikpa
    Thomas Miedaner
    Theoretical and Applied Genetics, 2019, 132 : 2721 - 2739
  • [27] Genomics-assisted breeding for ear rot resistances and reduced mycotoxin contamination in maize: methods, advances and prospects
    Gaikpa, David Sewordor
    Miedaner, Thomas
    THEORETICAL AND APPLIED GENETICS, 2019, 132 (10) : 2721 - 2739
  • [28] Genomics-assisted speed breeding for crop improvement: present and future
    Ceran, Marina
    Miladinovic, Dragana
    Dordevic, Vuk
    Trkulja, Dragana
    Radanovic, Aleksandra
    Glogovac, Svetlana
    Kondic-Spika, Ankica
    FRONTIERS IN SUSTAINABLE FOOD SYSTEMS, 2024, 8
  • [29] The apple REFPOP-a reference population for genomics-assisted breeding in apple
    Jung, Michaela
    Roth, Morgane
    Jose Aranzana, Maria
    Auwerkerken, Annemarie
    Bink, Marco
    Denance, Caroline
    Dujak, Christian
    Durel, Charles-Eric
    Font i Forcada, Carolina
    Cantin, Celia M.
    Guerra, Walter
    Howard, Nicholas P.
    Keller, Beat
    Lewandowski, Mariusz
    Ordidge, Matthew
    Rymenants, Marijn
    Sanin, Nadia
    Studer, Bruno
    Zurawicz, Edward
    Laurens, Francois
    Patocchi, Andrea
    Muranty, Helene
    HORTICULTURE RESEARCH, 2020, 7 (01)
  • [30] Genomics-Assisted Breeding: A Powerful Breeding Approach for Improving Plant Growth and Stress Resilience
    Tyagi, Anshika
    Mir, Zahoor Ahmad
    Almalki, Mohammed A.
    Deshmukh, Rupesh
    Ali, Sajad
    AGRONOMY-BASEL, 2024, 14 (06):