ERROR ESTIMATES FOR A NUMERICAL METHOD FOR THE COMPRESSIBLE NAVIER-STOKES SYSTEM ON SUFFICIENTLY SMOOTH DOMAINS

被引:14
|
作者
Feireisl, Eduard [1 ,2 ]
Hosek, Radim [1 ,2 ]
Maltese, David [1 ,2 ]
Novotny, Antonin [1 ,2 ]
机构
[1] Acad Sci Czech Republ, Inst Math, Zitna 25, CR-11567 Prague 1, Czech Republic
[2] Univ Toulon & Var, Inst Math Toulon, EA2134, BP 20132, F-83957 La Garde, France
基金
欧洲研究理事会;
关键词
Navier-Stokes system; finite element numerical method; finite volume numerical method; error estimates; FINITE-ELEMENT-METHOD; SUITABLE WEAK SOLUTIONS; BOUNDARY-VALUE-PROBLEMS; VOLUME SCHEMES; EQUATIONS; SOLVABILITY;
D O I
10.1051/m2an/2016022
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We derive an a priori error estimate for the numerical solution obtained by time and space discretization by the finite volume/finite element method of the barotropic Navier-Stokes equations. The numerical solution on a convenient polyhedral domain approximating a sufficiently smooth bounded domain is compared with an exact solution of the barotropic Navier-Stokes equations with a bounded density. The result is unconditional in the sense that there are no assumed bounds on the numerical solution. It is obtained by the combination of discrete relative energy inequality derived in [T. Gallouet, R. Herbin, D. Maltese and A. Novotny, IMA J. Numer. Anal. 36 (2016) 543-592.] and several recent results in the theory of compressible Navier-Stokes equations concerning blow up criterion established in [Y. Sun, C. Wang and Z. Zhang, J. Math. Pures Appl. 95 (2011) 36-47] and weak strong uniqueness principle established in [E. Feireisl, B.J. Jin and A. Novotny, J. Math. Fluid Mech. 14 (2012) 717-730].
引用
收藏
页码:279 / 319
页数:41
相关论文
共 50 条
  • [31] On a posteriori error estimates for the stationary Navier-Stokes problem
    Repin S.
    Journal of Mathematical Sciences, 2008, 150 (1) : 1885 - 1889
  • [32] A low numerical dissipation immersed interface method for the compressible Navier-Stokes equations
    Karagiozis, K.
    Kamakoti, R.
    Pantano, C.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (03) : 701 - 727
  • [33] Uniform regularity for the compressible Navier-Stokes system with low Mach number in domains with boundaries
    Masmoudi, Nader
    Rousset, Frederic
    Sun, Changzhen
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2022, 161 : 166 - 215
  • [34] Homogenization problems for the compressible Navier-Stokes system in 2D perforated domains
    Necasova, Sarka
    Pan, Jiaojiao
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (12) : 7859 - 7873
  • [35] A CONVERGENT NUMERICAL METHOD FOR THE FULL NAVIER-STOKES-FOURIER SYSTEM IN SMOOTH PHYSICAL DOMAINS
    Feireisl, Eduard
    Hosek, Radim
    Michalek, Martin
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2016, 54 (05) : 3062 - 3082
  • [36] Improved error estimates for the finite volume and the MAC schemes for the compressible Navier–Stokes system
    Eduard Feireisl
    Mária Lukáčová-Medvid’ová
    Bangwei She
    Numerische Mathematik, 2023, 153 : 493 - 529
  • [37] A hybrid mixed method for the compressible Navier-Stokes equations
    Schuetz, Jochen
    May, Georg
    JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 240 : 58 - 75
  • [38] A new relaxation method for the compressible Navier-Stokes equations
    Bongiovanni, E
    Ern, A
    Glinsky-Olivier, N
    COMPTES RENDUS MATHEMATIQUE, 2003, 336 (03) : 283 - 288
  • [39] A new relaxation method for the compressible Navier-Stokes equations
    Bongiovanni, E
    Ern, A
    Glinsky-Olivier, N
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2003, 13 (10): : 1379 - 1396
  • [40] A Schur Complement Method for Compressible Navier-Stokes Equations
    CEA-Saclay, DEN, DM2S, STMF, LMEC, F-91191 Gif-sur-Yvette, France
    不详
    Lect. Notes Comput. Sci. Eng., 2013, (543-550):