Consistency in Monte Carlo Uncertainty Analyses*

被引:12
|
作者
Jamroz, Benjamin F. [1 ]
Williams, Dylan F. [1 ]
机构
[1] NIST, 325 Broadway, Boulder, CO 80303 USA
关键词
the monte carlo method; uncertainty analysis; distributed computing; EFFICIENT;
D O I
10.1088/1681-7575/aba5aa
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
The Monte Carlo method is an established tool that is often used to evaluate the uncertainty of measurements. For computationally challenging problems, Monte Carlo uncertainty analyses are typically distributed across multiple processes on a multi-node cluster or supercomputer. Additionally, results from previous uncertainty analyses are often used in further analyses in a sequential manner. To accurately capture the uncertainty of the output quantity of interest, Monte Carlo sample distributions must be treated consistently, using reproducible replicates, throughout the entire analysis. We highlight the need for and importance of consistent Monte Carlo methods in distributed and sequential uncertainty analyses, recommend an implementation to achieve the needed consistency in these complicated analyses, and discuss methods to evaluate the accuracy of implementations.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Uncertainty of complex systems by Monte Carlo simulation
    Basil, Martin
    Jamieson, Andrew
    Measurement and Control, 1999, 32 (01): : 16 - 20
  • [22] Monte Carlo evaluation of periodic error uncertainty
    Schmitz, Tony L.
    Kim, Hyo Soo
    PRECISION ENGINEERING-JOURNAL OF THE INTERNATIONAL SOCIETIES FOR PRECISION ENGINEERING AND NANOTECHNOLOGY, 2007, 31 (03): : 251 - 259
  • [23] TRANSFERRING MONTE CARLO DISTRIBUTIONS IN THE EVALUATION OF UNCERTAINTY
    Willink, Robin
    ADVANCED MATHEMATICAL AND COMPUTATIONAL TOOLS IN METROLOGY AND TESTING VIII, 2009, 78 : 351 - 356
  • [24] Evaluation of Monte Carlo methods for assessing uncertainty
    Liu, N
    Oliver, DS
    SPE JOURNAL, 2003, 8 (02): : 188 - 195
  • [25] Uncertainty Underprediction in Monte Carlo Eigenvalue Calculations
    Mervin, Brenden T.
    Mosher, Scott W.
    Wagner, John C.
    Maldonado, G. I.
    NUCLEAR SCIENCE AND ENGINEERING, 2013, 173 (03) : 276 - 292
  • [26] Uncertainty estimation and Monte Carlo simulation method
    Papadopoulos, CE
    Yeung, H
    FLOW MEASUREMENT AND INSTRUMENTATION, 2001, 12 (04) : 291 - 298
  • [27] Uncertainty analysis in Monte Carlo criticality computations
    Ao, Qi
    NUCLEAR ENGINEERING AND DESIGN, 2011, 241 (12) : 4697 - 4703
  • [28] Uncertainty Propagation in Monte Carlo Depletion Analysis
    Park, Ho Jin
    Shim, Hyung Jin
    Kim, Chang Hyo
    NUCLEAR SCIENCE AND ENGINEERING, 2011, 167 (03) : 196 - 208
  • [29] Determination of measurement uncertainty by Monte Carlo simulation
    Heisselmann, Daniel
    Franke, Matthias
    Rost, Kerstin
    Wendt, Klaus
    Kistner, Thomas
    Schwehn, Carsten
    ADVANCED MATHEMATICAL AND COMPUTATIONAL TOOLS IN METROLOGY AND TESTING XI, 2019, 89 : 192 - 202
  • [30] Uncertainty Propagation with Fast Monte Carlo Techniques
    Rochman, D.
    van der Marck, S. C.
    Koning, A. J.
    Sjostrand, H.
    Zwermann, W.
    NUCLEAR DATA SHEETS, 2014, 118 : 367 - 369