Uncertainty Propagation with Fast Monte Carlo Techniques

被引:18
|
作者
Rochman, D. [1 ]
van der Marck, S. C. [1 ]
Koning, A. J. [1 ]
Sjostrand, H. [2 ]
Zwermann, W. [3 ]
机构
[1] Nucl Res & Consultancy Grp NRG, Petten, Netherlands
[2] Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden
[3] Gesell Anlagen & Reaktorsicherheit GRS mbH Forsch, Garching, Germany
关键词
D O I
10.1016/j.nds.2014.04.082
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
Two new and faster Monte Carlo methods for the propagation of nuclear data uncertainties in Monte Carlo nuclear simulations are presented (the "Fast TMC" and "Fast GRS" methods). They are addressing the main drawback of the original Total Monte Carlo method (TMC), namely the necessary large time multiplication factor compared to a single calculation. With these new methods, Monte Carlo simulations can now be accompanied with uncertainty propagation (other than statistical), with small additional calculation time. The new methods are presented and compared with the TMC methods for criticality benchmarks.
引用
收藏
页码:367 / 369
页数:3
相关论文
共 50 条
  • [1] Examples of Monte Carlo techniques applied for nuclear data uncertainty propagation
    Cabellos, Oscar
    Fiorito, Luca
    [J]. 5TH INTERNATIONAL WORKSHOP ON NUCLEAR DATA EVALUATION FOR REACTOR APPLICATIONS (WONDER-2018), 2019, 211
  • [2] Monte Carlo Uncertainty Propagation with the NIST Uncertainty Machine
    Albert, Daniel R.
    [J]. JOURNAL OF CHEMICAL EDUCATION, 2020, 97 (05) : 1491 - 1494
  • [3] Uncertainty Propagation in Monte Carlo Depletion Analysis
    Park, Ho Jin
    Shim, Hyung Jin
    Kim, Chang Hyo
    [J]. NUCLEAR SCIENCE AND ENGINEERING, 2011, 167 (03) : 196 - 208
  • [4] Efficient Use of Monte Carlo: Uncertainty Propagation
    Rochman, D.
    Zwermann, W.
    van der Marck, S. C.
    Koning, A. J.
    Sjostrand, H.
    Helgesson, P.
    Krzykacz-Hausmann, B.
    [J]. NUCLEAR SCIENCE AND ENGINEERING, 2014, 177 (03) : 337 - 349
  • [5] A comparison of uncertainty propagation techniques using NDaST: full, half or zero Monte Carlo?
    Dyrda, James
    Hill, Ian
    Fiorito, Luca
    Cabellos, Oscar
    Soppera, Nicolas
    [J]. EPJ NUCLEAR SCIENCES & TECHNOLOGIES, 2018, 4
  • [6] Stochastic Uncertainty Propagation in Monte Carlo Depletion Calculations
    Newell, Quentin
    Sanders, Charlotta
    [J]. NUCLEAR SCIENCE AND ENGINEERING, 2015, 179 (03) : 253 - 263
  • [7] Topological analysis in Monte Carlo simulation for uncertainty propagation
    Pakyuz-Charrier, Evren
    Jessell, Mark
    Giraud, Jeremie
    Lindsay, Mark
    Ogarko, Vitaliy
    [J]. SOLID EARTH, 2019, 10 (05) : 1663 - 1684
  • [8] Beyond Monte Carlo for the Initial Uncertainty Propagation Problem
    Yang, Chao
    Kumar, Mrinal
    [J]. 2014 IEEE 53RD ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2014, : 5183 - 5188
  • [9] A fast Monte-Carlo method with a reduced basis of control variates applied to uncertainty propagation and Bayesian estimation
    Boyaval, Sebastien
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2012, 241 : 190 - 205
  • [10] Uncertainty evaluation in gamma spectrometric measurements: Uncertainty propagation versus Monte Carlo simulation
    Rameback, H.
    Lindgren, P.
    [J]. APPLIED RADIATION AND ISOTOPES, 2018, 142 : 71 - 76