Efficient Use of Monte Carlo: Uncertainty Propagation

被引:67
|
作者
Rochman, D. [1 ]
Zwermann, W. [2 ]
van der Marck, S. C. [1 ]
Koning, A. J. [1 ]
Sjostrand, H. [3 ]
Helgesson, P. [3 ]
Krzykacz-Hausmann, B. [2 ]
机构
[1] Nucl Res & Consultancy Grp NRG, Petten, Netherlands
[2] Gesell Anlagen & Reaktorsicherheit GRS mbH, Garching, Germany
[3] Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden
关键词
ERROR PROPAGATION; BIASES;
D O I
10.13182/NSE13-32
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
A new and faster Total Monte Carlo (TMC) method for the propagation of nuclear data uncertainties in Monte Carlo nuclear simulations is presented (the fast TMC method). It addresses the main drawback of the original TMC method, namely, the necessary large time multiplication factor compared to a single calculation. With this new method, Monte Carlo simulations can now be accompanied with an uncertainty propagation (other than statistical), with small additional calculation time. The fast TMC method is presented and compared with the TMC and fast GRS methods for criticality and shielding benchmarks and burnup calculations. Finally, to demonstrate the efficiency of the method, uncertainties due to uncertainties in U-235,U-238, Pu-239, and thermal scattering nuclear data, for the local deposited power in 12.7 million cells, are calculated for a full-size reactor core.
引用
收藏
页码:337 / 349
页数:13
相关论文
共 50 条
  • [1] Modern Monte Carlo methods for efficient uncertainty quantification and propagation: A survey
    Zhang, Jiaxin
    [J]. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2021, 13 (05)
  • [2] Monte Carlo Uncertainty Propagation with the NIST Uncertainty Machine
    Albert, Daniel R.
    [J]. JOURNAL OF CHEMICAL EDUCATION, 2020, 97 (05) : 1491 - 1494
  • [3] Uncertainty Propagation in Monte Carlo Depletion Analysis
    Park, Ho Jin
    Shim, Hyung Jin
    Kim, Chang Hyo
    [J]. NUCLEAR SCIENCE AND ENGINEERING, 2011, 167 (03) : 196 - 208
  • [4] Uncertainty Propagation with Fast Monte Carlo Techniques
    Rochman, D.
    van der Marck, S. C.
    Koning, A. J.
    Sjostrand, H.
    Zwermann, W.
    [J]. NUCLEAR DATA SHEETS, 2014, 118 : 367 - 369
  • [5] Stochastic Uncertainty Propagation in Monte Carlo Depletion Calculations
    Newell, Quentin
    Sanders, Charlotta
    [J]. NUCLEAR SCIENCE AND ENGINEERING, 2015, 179 (03) : 253 - 263
  • [6] Topological analysis in Monte Carlo simulation for uncertainty propagation
    Pakyuz-Charrier, Evren
    Jessell, Mark
    Giraud, Jeremie
    Lindsay, Mark
    Ogarko, Vitaliy
    [J]. SOLID EARTH, 2019, 10 (05) : 1663 - 1684
  • [7] Beyond Monte Carlo for the Initial Uncertainty Propagation Problem
    Yang, Chao
    Kumar, Mrinal
    [J]. 2014 IEEE 53RD ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2014, : 5183 - 5188
  • [8] The use of a Monte Carlo method for evaluating uncertainty and expanded uncertainty
    Cox, Maurice G.
    Siebert, Bernd R. L.
    [J]. METROLOGIA, 2006, 43 (04) : S178 - S188
  • [9] Uncertainty evaluation in gamma spectrometric measurements: Uncertainty propagation versus Monte Carlo simulation
    Rameback, H.
    Lindgren, P.
    [J]. APPLIED RADIATION AND ISOTOPES, 2018, 142 : 71 - 76
  • [10] Use of Monte Carlo Simulation for uncertainty evaluation in metrology
    Cox, MG
    Dainton, MP
    Forbes, AB
    Harris, PM
    Schwenke, H
    Siebert, BRL
    Wöger, W
    [J]. ADVANCED MATHEMATICAL AND COMPUTATIONAL TOOLS IN METROLOGY V, 2001, 57 : 93 - 105