共 50 条
REPEATED-ROOT CONSTACYCLIC CODES OF LENGTH 2ps OVER GALOIS RINGS
被引:0
|作者:
Klin-Eam, Chakkrid
[1
]
Sriwirach, Wateekorn
[1
]
机构:
[1] Naresuan Univ, Fac Sci, Dept Math, Phitsanulok 65000, Thailand
关键词:
constacyclic codes;
repeated-root codes;
Galois rings;
Rosenbloom-Tsfasman distance;
ROSENBLOOM-TSFASMAN;
NEGACYCLIC CODES;
CYCLIC CODES;
Z(4);
PREPARATA;
KERDOCK;
D O I:
10.4134/BKMS.b180148
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
In this paper, we consider the structure of gamma-constacyclic codes of length 2p(s) over the Galois ring GR(p(a), m) for any unit gamma of the form xi(0) + p xi(1) + p(2)z, where z is an element of GR(p(a), m) and xi(0), xi(1) are nonzero elements of the set tau(p, m). Here tau(p, m) denotes a complete set of representatives of the cosets GR(p(a),m)/pGR(p(a),m) = F(p)m in GR(p(a),m). When gamma is not a square, the rings Rp (a, m, gamma) = Gr(p(a),m)[x]/< x(2ps) -gamma > is a chain ring with maximal ideal < x(2) - delta >, where delta p(s) = xi 0, and the number of codewords of gamma-constacyclic code are provided. Furthermore, the self-orthogonal and self-dual gamma-constacyclic codes of length 2p(s) over GR(p(a), m) are also established. Finally, we determine the Rosenbloom-Tsfasman (RT) distances and weight distributions of all such codes.
引用
收藏
页码:131 / 150
页数:20
相关论文