On the Newton's method for transcendental functions

被引:1
|
作者
Kriete, H [1 ]
机构
[1] Univ Gottingen, Fak Math, D-37073 Gottingen, Germany
来源
关键词
D O I
10.1215/kjm/1250517620
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The family of polynomials P-n : C x C --> C; (lambda, z) --> lambda(1 + z/n)(n) converges uniformly on compact subsets of the complex plane to the family of the complex exponentials E : C x C --> C; (lambda, z) --> lambdae(z), as n tends to infinity. Due to this convergence certain dynamical properties of the polynomials P-n(lambda,(.)) carry over to the exponentials E(, (.)). Thus it possible to study entire transcendental maps, the exponentials, by considering polynomials for which the theory is well-known. Two particular problems have received attraction: (1) For a fixed parameter lambda is an element of C do the Julia sets of the polynomials P-n(lambda, (.)) converge to the Julia set of E(lambda, (.))? (2) Do the hyperbolic components in the parameter space of P-n converge to hyperbolic components of the family E? In the present paper we study the Newton's method associated with the entire transcendental functions f(z) = p(z)e(q(z)) + az + b, with complex numbers a and b, and complex polynomials p and q. These functions N-f can be approximated by the Newton's method associated with f(m)(z) = p(z)(1 + q(z)/m)(m) + az + b. In this paper we study the convergence of the Julia sets J(N-fm) --> J(N-f) and the Hausdorff convergence of hyperbolic components in the families {N-fm} to the hyperbolic components of the family {N-f}.
引用
下载
收藏
页码:611 / 625
页数:15
相关论文
共 50 条
  • [41] A generalization of Newton's identity and Macdonald functions
    Cai, Tommy Wuxing
    Jing, Naihuan
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2014, 125 : 342 - 356
  • [42] Dynamics of transcendental functions
    Hua, XH
    Wang, XL
    Yang, CC
    PROCEEDINGS OF THE SECOND ISAAC CONGRESS, VOLS 1 AND 2, 2000, 7 : 311 - 316
  • [43] Differentially transcendental functions
    Mijajlovic, Zarko
    Malesevic, Branko
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2008, 15 (02) : 193 - 201
  • [44] Visualizing transcendental functions
    Thompson, WJ
    COMPUTING IN SCIENCE & ENGINEERING, 2000, 2 (06) : 98 - 103
  • [45] Transcendentally transcendental functions
    Carmichael, R. D.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1913, 14 (1-4) : 311 - 319
  • [46] Extended Semismooth Newton Method for Functions with Values in a Cone
    Bernard, Severine
    Cabuzel, Catherine
    Nuiro, Silvere Paul
    Pietrus, Alain
    ACTA APPLICANDAE MATHEMATICAE, 2018, 155 (01) : 85 - 98
  • [47] Extended Semismooth Newton Method for Functions with Values in a Cone
    Séverine Bernard
    Catherine Cabuzel
    Silvère Paul Nuiro
    Alain Pietrus
    Acta Applicandae Mathematicae, 2018, 155 : 85 - 98
  • [48] RIEMANNIAN NEWTON METHOD FOR POSITIVE BOUNDED HESSIAN FUNCTIONS
    Bercu, Gabriel
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2006, 55 (01) : 53 - 62
  • [49] AN ELEMENTARY DISCUSSION OF TRANSCENDENTAL NATURE OF ELEMENTARY TRANSCENDENTAL FUNCTIONS
    HAMMING, RW
    AMERICAN MATHEMATICAL MONTHLY, 1970, 77 (03): : 294 - &
  • [50] KEPLER'S EQUATION AND NEWTON'S METHOD
    Colwell, Peter
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 1991, 52 (02): : 203 - 204