Extended Semismooth Newton Method for Functions with Values in a Cone

被引:2
|
作者
Bernard, Severine [1 ]
Cabuzel, Catherine [1 ]
Nuiro, Silvere Paul [1 ]
Pietrus, Alain [1 ]
机构
[1] Univ Antilles, Dept Math & Informat, Lab LAMIA, EA 4540, Campus Fouillole, F-97159 Pointe a Pitre, Guadeloupe, France
关键词
Variational inclusion; Semismooth function; Closed convex cone; Majorizing sequence; Normed convex process; GENERALIZED EQUATIONS; LOCAL CONVERGENCE; CONVEX; 2ND-ORDER;
D O I
10.1007/s10440-017-0146-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with variational inclusions of the form 0 is an element of K - f(x)where f : R-n -> R-m is a semismooth function and is a nonempty closed convex cone in R-n. We show that the previous problem can be solved by a Newton-type method using the Clarke generalized Jacobian of . The results obtained in this paper extend those obtained by Robinson in the famous paper (Robinson in Numer. Math. 19:341-347, 1972). We provide a semilocal method with a superlinear convergence that is new in the context of semismooth functions. Finally, numerical results are also given to illustrate the convergence.
引用
收藏
页码:85 / 98
页数:14
相关论文
共 50 条
  • [1] Extended Semismooth Newton Method for Functions with Values in a Cone
    Séverine Bernard
    Catherine Cabuzel
    Silvère Paul Nuiro
    Alain Pietrus
    [J]. Acta Applicandae Mathematicae, 2018, 155 : 85 - 98
  • [2] Extended Newton-type method for nonlinear functions with values in a cone
    G. N. Silva
    P. S. M. Santos
    S. S. Souza
    [J]. Computational and Applied Mathematics, 2018, 37 : 5082 - 5097
  • [3] Extended Newton-type method for nonlinear functions with values in a cone
    Silva, G. N.
    Santos, P. S. M.
    Souza, S. S.
    [J]. COMPUTATIONAL & APPLIED MATHEMATICS, 2018, 37 (04): : 5082 - 5097
  • [4] A semismooth Newton method for nonlinear symmetric cone programming
    Kong, Lingchen
    Meng, Qingmin
    [J]. MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2012, 76 (02) : 129 - 145
  • [5] A semismooth Newton method for nonlinear symmetric cone programming
    Lingchen Kong
    Qingmin Meng
    [J]. Mathematical Methods of Operations Research, 2012, 76 : 129 - 145
  • [6] EXTENDED NEWTON'S METHOD FOR MAPPINGS ON RIEMANNIAN MANIFOLDS WITH VALUES IN A CONE
    Wang, Jin-Hua
    Huang, Shuechin
    Li, Chong
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2009, 13 (2B): : 633 - 656
  • [7] Inexact Newton method for non-linear functions with values in a cone
    Ferreira, O. P.
    Silva, G. N.
    [J]. APPLICABLE ANALYSIS, 2019, 98 (08) : 1461 - 1477
  • [8] AN INEXACT SEMISMOOTH NEWTON METHOD FOR VARIATIONAL INEQUALITY WITH SYMMETRIC CONE CONSTRAINTS
    Chen, Shuang
    Pang, Li-Ping
    Li, Dan
    [J]. JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2015, 11 (03) : 733 - 746
  • [9] ON NEWTON'S METHOD FOR SEMISMOOTH EQUATIONS
    Argyros, I. K.
    Gonzalez, D.
    [J]. JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS, 2016,
  • [10] A semismooth Newton method for topology optimization
    Amstutz, Samuel
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (06) : 1585 - 1595