Overall Survival Prediction in Glioblastoma With Radiomic Features Using Machine Learning

被引:74
|
作者
Baid, Ujjwal [1 ]
Rane, Swapnil U. [2 ]
Talbar, Sanjay [1 ]
Gupta, Sudeep [3 ]
Thakur, Meenakshi H. [4 ]
Moiyadi, Aliasgar [5 ]
Mahajan, Abhishek [4 ]
机构
[1] Shri Guru Gobind Singhji Inst Engn & Technol, Dept Elect & Telecommun Engn, Nanded, India
[2] HBNI, Dept Pathol, ACTREC, Tata Mem Ctr, Navi Mumbai, India
[3] HBNI, Dept Med Oncol, ACTREC, Tata Mem Ctr, Navi Mumbai, India
[4] HBNI, Tata Mem Ctr, Dept Radiodiag & Imaging, Tata Mem Hosp, Mumbai, Maharashtra, India
[5] HBNI, Tata Mem Ctr, Dept Neurosurg Serv, Tata Mem Hosp, Mumbai, Maharashtra, India
关键词
brain tumor; glioblastoma; overall survival; radiomic; machine learning; SIGNATURE;
D O I
10.3389/fncom.2020.00061
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Glioblastoma is a WHO grade IV brain tumor, which leads to poor overall survival (OS) of patients. For precise surgical and treatment planning, OS prediction of glioblastoma (GBM) patients is highly desired by clinicians and oncologists. Radiomic research attempts at predicting disease prognosis, thus providing beneficial information for personalized treatment from a variety of imaging features extracted from multiple MR images. In this study, first-order, intensity-based volume and shape-based and textural radiomic features are extracted from fluid-attenuated inversion recovery (FLAIR) and T1ce MRI data. The region of interest is further decomposed with stationary wavelet transform with low-pass and high-pass filtering. Further, radiomic features are extracted on these decomposed images, which helped in acquiring the directional information. The efficiency of the proposed algorithm is evaluated on Brain Tumor Segmentation (BraTS) challenge training, validation, and test datasets. The proposed approach achieved 0.695, 0.571, and 0.558 on BraTS training, validation, and test datasets. The proposed approach secured the third position in BraTS 2018 challenge for the OS prediction task.
引用
下载
收藏
页数:9
相关论文
共 50 条
  • [11] Survival prediction of glioblastoma patients using machine learning and deep learning: a systematic review
    Roya Poursaeed
    Mohsen Mohammadzadeh
    Ali Asghar Safaei
    BMC Cancer, 24 (1)
  • [12] Survival prediction of glioblastoma patients using modern deep learning and machine learning techniques
    Samin Babaei Rikan
    Amir Sorayaie Azar
    Amin Naemi
    Jamshid Bagherzadeh Mohasefi
    Habibollah Pirnejad
    Uffe Kock Wiil
    Scientific Reports, 14
  • [13] Survival prediction of glioblastoma patients using modern deep learning and machine learning techniques
    Rikan, Samin Babaei
    Azar, Amir Sorayaie
    Naemi, Amin
    Mohasefi, Jamshid Bagherzadeh
    Pirnejad, Habibollah
    Wiil, Uffe Kock
    SCIENTIFIC REPORTS, 2024, 14 (01)
  • [14] TOWARDS INDIVIDUALIZED SURVIVAL PREDICTION IN GLIOBLASTOMA PATIENTS USING MACHINE LEARNING METHODS
    Vera, L.
    Perez-Beteta, J.
    Molina, D.
    Borras, J. M.
    Benavides, M.
    Barcia, J. A.
    Velasquez, C.
    Albillo, D.
    Lara, P.
    Perez-Garcia, V. M.
    NEURO-ONCOLOGY, 2017, 19 : 84 - 84
  • [15] Overall survival prediction in glioblastoma patients using structural magnetic resonance imaging (MRI): advanced radiomic features may compensate for lack of advanced MRI modalities
    Bakas, Spyridon
    Shukla, Gaurav
    Akbari, Hamed
    Erus, Guray
    Sotiras, Aristeidis
    Rathore, Saima
    Sako, Chiharu
    Ha, Sung Min
    Rozycki, Martin
    Shinohara, Russell T.
    Bilello, Michel
    Davatzikos, Christos
    JOURNAL OF MEDICAL IMAGING, 2020, 7 (03)
  • [16] Radiomic MRI Phenotyping of Glioblastoma: Improving Survival Prediction
    Bender, Benjamin
    ROFO-FORTSCHRITTE AUF DEM GEBIET DER RONTGENSTRAHLEN UND DER BILDGEBENDEN VERFAHREN, 2019, 191 (07): : 600 - +
  • [17] Overall Survival Prediction Using Conventional MRI Features
    Ren, Yanhao
    Sun, Pin
    Lu, Wenlian
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES (BRAINLES 2019), PT II, 2020, 11993 : 244 - 254
  • [18] Machine learning and radiomic phenotyping of lower grade gliomas: improving survival prediction
    Choi, Yoon Seong
    Ahn, Sung Soo
    Chang, Jong Hee
    Kang, Seok-Gu
    Kim, Eui Hyun
    Kim, Se Hoon
    Jain, Rajan
    Lee, Seung-Koo
    EUROPEAN RADIOLOGY, 2020, 30 (07) : 3834 - 3842
  • [19] PREDICTION OF FONTAN OUTCOMES USING T2-WEIGHTED MRI RADIOMIC FEATURES AND MACHINE LEARNING
    Prasad, Ayush
    Dillman, Jonathan
    Lubert, Adam
    Trout, Andrew
    He, Lili
    Li, Hailong
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2023, 81 (08) : 1618 - 1618
  • [20] Machine and Deep Learning Algorithms for COVID-19 Mortality Prediction Using Clinical and Radiomic Features
    Verzellesi, Laura
    Botti, Andrea
    Bertolini, Marco
    Trojani, Valeria
    Carlini, Gianluca
    Nitrosi, Andrea
    Monelli, Filippo
    Besutti, Giulia
    Castellani, Gastone
    Remondini, Daniel
    Milanese, Gianluca
    Croci, Stefania
    Sverzellati, Nicola
    Salvarani, Carlo
    Iori, Mauro
    ELECTRONICS, 2023, 12 (18)