The Ricci flow for simply connected nilmanifolds

被引:0
|
作者
Lauret, Jorge [1 ,2 ]
机构
[1] Univ Nacl Cordoba, FaMAF, RA-5000 Cordoba, Argentina
[2] Univ Nacl Cordoba, CIEM, RA-5000 Cordoba, Argentina
关键词
EINSTEIN SOLVMANIFOLDS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the Ricci flow g(t) starting at any metric on R-n that is invariant by a transitive nilpotent Lie group N can be obtained by solving an ordinary differential equation (ODE) for a curve of nilpotent Lie brackets on R-n. By using that this ODE is the negative gradient flow of a homogeneous polynomial, we obtain that g(t) is type-III, and, up to pull-back by time-dependent diffeomorphisms, that g(t) converges to the flat metric, and the rescaling vertical bar R(g(t))vertical bar g(t) converges to a Ricci soliton in C-infinity, uniformly on compact sets in R-n. The Ricci soliton limit is also invariant by some transitive nilpotent Lie group, though possibly nonisomorphic to N.
引用
收藏
页码:831 / 854
页数:24
相关论文
共 50 条
  • [21] RIEMANNIAN 2-STEP NILMANIFOLDS WITH PRESCRIBED RICCI TENSOR
    Eberlein, Patrick
    GEOMETRIC AND PROBABILISTIC STRUCTURES IN DYNAMICS, 2008, 469 : 167 - 195
  • [22] ON SIMPLY CONNECTED ALGEBRAS
    BAUTISTA, R
    LARRION, F
    SALMERON, L
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1983, 27 (APR): : 212 - 220
  • [23] The Simply Connected Case
    de Silva, Vin
    Robbin, Joel W.
    Salamon, Dietmar A.
    MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 230 (1080) : 15 - 22
  • [24] SIMPLY CONNECTED LIMITS
    PARE, R
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1990, 42 (04): : 731 - 746
  • [25] Simply connected sets
    Basye, R. E.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1935, 38 (1-3) : 341 - 356
  • [26] A remark on the Bismut-Ricci form on 2-step nilmanifolds
    Pujia, Mattia
    Vezzoni, Luigi
    COMPTES RENDUS MATHEMATIQUE, 2018, 356 (02) : 222 - 226
  • [28] Simply connected latin quandles
    Bonatto, Marco
    Vojtechovsky, Petr
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2018, 27 (11)
  • [29] Simply connected incidence algebras
    Assem, I
    Platzeck, MI
    Redondo, MJ
    Trepode, S
    DISCRETE MATHEMATICS, 2003, 269 (1-3) : 333 - 355
  • [30] On semilocally simply connected spaces
    Fischer, Hanspeter
    Repovs, Dusan
    Virk, Ziga
    Zastrow, Andreas
    TOPOLOGY AND ITS APPLICATIONS, 2011, 158 (03) : 397 - 408