Simply connected incidence algebras

被引:3
|
作者
Assem, I [1 ]
Platzeck, MI
Redondo, MJ
Trepode, S
机构
[1] Univ Sherbrooke, Sherbrooke, PQ J1K 2R1, Canada
[2] Univ Nacl Sur, INMABB, RA-8000 Bahia Blanca, Argentina
[3] Univ Nacl Mar Plata, Mar Del Plata, Argentina
关键词
simply connected incidence algebras and simplicial complexes; crowns; fundamental groups;
D O I
10.1016/S0012-365X(03)00128-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is known that the incidence algebra of a finite poset is not strongly simply connected if and only if its quiver contains a crown. We give a combinatorial condition on crowns which, if satisfied, forces the incidence algebra to be simply connected. The converse is not true, but we show that a simply connected incidence algebra which is not strongly simply connected always contains crowns satisfying this condition. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:333 / 355
页数:23
相关论文
共 50 条
  • [1] ON SIMPLY CONNECTED ALGEBRAS
    BAUTISTA, R
    LARRION, F
    SALMERON, L
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1983, 27 (APR): : 212 - 220
  • [2] CRITICAL SIMPLY CONNECTED ALGEBRAS
    BONGARTZ, K
    MANUSCRIPTA MATHEMATICA, 1984, 46 (1-3) : 117 - 136
  • [3] TILTING SIMPLY CONNECTED ALGEBRAS
    ASSEM, I
    SKOWRONSKI, A
    COMMUNICATIONS IN ALGEBRA, 1994, 22 (12) : 4611 - 4619
  • [4] Strongly simply connected algebras
    Assem, I
    Liu, SP
    JOURNAL OF ALGEBRA, 1998, 207 (02) : 449 - 477
  • [5] Strongly simply connected Auslander algebras
    Assem, I
    Brown, P
    GLASGOW MATHEMATICAL JOURNAL, 1997, 39 : 21 - 27
  • [6] ON OMNIPRESENT MODULES IN SIMPLY CONNECTED ALGEBRAS
    DELAPENA, JA
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1987, 36 : 385 - 392
  • [7] ON SOME CLASSES OF SIMPLY CONNECTED ALGEBRAS
    ASSEM, I
    SKOWRONSKI, A
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1988, 56 : 417 - 450
  • [8] Simply connected algebras of polynomial growth
    Skowronski, A
    COMPOSITIO MATHEMATICA, 1997, 109 (01) : 99 - 133
  • [9] Strongly simply connected derived tubular algebras
    Assem, I
    REPRESENTATIONS OF ALGEBRAS, PROCEEDINGS, 2002, 224 : 21 - 29
  • [10] SELF-INJECTIVE AND SIMPLY CONNECTED ALGEBRAS
    BRETSCHER, O
    LASER, C
    RIEDTMANN, C
    MANUSCRIPTA MATHEMATICA, 1981, 36 (03) : 253 - 307