Jointly Trained Variational Autoencoder for Multi-Modal Sensor Fusion

被引:5
|
作者
Korthals, Timo [1 ]
Hesse, Marc [1 ]
Leitner, Juergen [2 ]
Melnik, Andrew [3 ]
Rueckert, Ulrich [1 ]
机构
[1] Bielefeld Univ, Cognitron & Sensor Syst, Bielefeld, Germany
[2] Queensland Univ Technol, Australian Ctr Robot Vis, Brisbane, Qld, Australia
[3] Bielefeld Univ, Neuroinformat Grp, Bielefeld, Germany
关键词
Multi-Modal Fusion; Deep Generative Model; Variational Autoencoder;
D O I
10.23919/fusion43075.2019.9011314
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This work presents the novel multi-modal Variational Autoencoder approach M(2)VAE which is derived from the complete marginal joint log-likelihood. This allows the end-to-end training of Bayesian information fusion on raw data for all subsets of a sensor setup. Furthermore, we introduce the concept of in-place fusion applicable to distributed sensing where latent embeddings of observations need to be fused with new data. To facilitate in-place fusion even on raw data, we introduced the concept of a re-encoding loss that stabilizes the decoding and makes visualization of latent statistics possible. We also show that the M(2)VAE finds a coherent latent embedding, such that a single nave Bayes classifier performs equally well on all permutations of a bi-modal Mixture-of-Gaussians signal. Finally, we show that our approach outperforms current VAE approaches on a bi-modal MNIST & fashion-MNIST data set and works sufficiently well as a preprocessing on a tri-modal simulated camera & LiDAR data set from the Gazebo simulator.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Human Emotion Estimation Using Multi-Modal Variational AutoEncoder with Time Changes
    Moroto, Yuya
    Maeda, Keisuke
    Ogawa, Takahiro
    Haseyama, Miki
    [J]. 2021 IEEE 3RD GLOBAL CONFERENCE ON LIFE SCIENCES AND TECHNOLOGIES (IEEE LIFETECH 2021), 2021, : 67 - 68
  • [2] Issues in Multi-Valued Multi-Modal Sensor Fusion
    Janidarmian, Majid
    Zilic, Zeljko
    Radecka, Katarzyna
    [J]. 2012 42ND IEEE INTERNATIONAL SYMPOSIUM ON MULTIPLE-VALUED LOGIC (ISMVL), 2012, : 238 - 243
  • [3] Noncontact Sleep Study by Multi-Modal Sensor Fusion
    Chung, Ku-young
    Song, Kwangsub
    Shin, Kangsoo
    Sohn, Jinho
    Cho, Seok Hyun
    Chang, Joon-Hyuk
    [J]. SENSORS, 2017, 17 (07)
  • [4] Robust Multi-Modal Sensor Fusion: An Adversarial Approach
    Roheda, Siddharth
    Krim, Hamid
    Riggan, Benjamin S.
    [J]. IEEE SENSORS JOURNAL, 2021, 21 (02) : 1885 - 1896
  • [5] Multi-modal Fusion
    Liu, Huaping
    Hussain, Amir
    Wang, Shuliang
    [J]. INFORMATION SCIENCES, 2018, 432 : 462 - 462
  • [6] External multi-modal imaging sensor calibration for sensor fusion: A review
    Qiu, Zhouyan
    Martinez-Sanchez, Joaquin
    Arias-Sanchez, Pedro
    Rashdi, Rabia
    [J]. INFORMATION FUSION, 2023, 97
  • [7] Multi-Modal Domain Adaptation Variational Autoencoder for EEG-Based Emotion Recognition
    Yixin Wang
    Shuang Qiu
    Dan Li
    Changde Du
    Bao-Liang Lu
    Huiguang He
    [J]. IEEE/CAA Journal of Automatica Sinica, 2022, 9 (09) : 1612 - 1626
  • [8] Anytime 3D Object Reconstruction Using Multi-Modal Variational Autoencoder
    Yu, Hyeonwoo
    Oh, Jean
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2022, 7 (02): : 2162 - 2169
  • [9] Multi-camera and Multi-modal Sensor Fusion, an Architecture Overview
    Luis Bustamante, Alvaro
    Molina, Jose M.
    Patricio, Miguel A.
    [J]. DISTRIBUTED COMPUTING AND ARTIFICIAL INTELLIGENCE, 2010, 79 : 301 - 308
  • [10] Special issue on multi-camera and multi-modal sensor fusion
    Cavallaro, Andrea
    Aghajan, Hamid
    [J]. COMPUTER VISION AND IMAGE UNDERSTANDING, 2010, 114 (06) : 609 - 610