Human Emotion Estimation Using Multi-Modal Variational AutoEncoder with Time Changes

被引:0
|
作者
Moroto, Yuya [1 ]
Maeda, Keisuke [2 ]
Ogawa, Takahiro [3 ]
Haseyama, Miki [3 ]
机构
[1] Hokkaido Univ, Grad Sch Informat Sci & Technol, Sapporo, Hokkaido, Japan
[2] Hokkaido Univ, Off Inst Res, Sapporo, Hokkaido, Japan
[3] Hokkaido Univ, Fac Informat Sci & Technol, Sapporo, Hokkaido, Japan
关键词
D O I
10.1109/LIFETECH52111.2021.9391939
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A human emotion estimation method via feature integration using multi-modal variational autoencoder (MVAE) with time changes is presented in this paper. To utilize multi-modal information such as gaze and brain activity data including some noises, the proposed method newly introduces MVAE into the human emotion estimation. Furthermore, the proposed MVAE can consider the changes in bio-signals with time and reduce the effect of noises caused in bio-signals by using the probabilistic variation. Experimental results with that of some state-of-the-art methods indicate that the proposed method is effective.
引用
收藏
页码:67 / 68
页数:2
相关论文
共 50 条
  • [1] Multi-Modal Domain Adaptation Variational Autoencoder for EEG-Based Emotion Recognition
    Yixin Wang
    Shuang Qiu
    Dan Li
    Changde Du
    Bao-Liang Lu
    Huiguang He
    [J]. IEEE/CAA Journal of Automatica Sinica, 2022, 9 (09) : 1612 - 1626
  • [2] Jointly Trained Variational Autoencoder for Multi-Modal Sensor Fusion
    Korthals, Timo
    Hesse, Marc
    Leitner, Juergen
    Melnik, Andrew
    Rueckert, Ulrich
    [J]. 2019 22ND INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION 2019), 2019,
  • [3] Anytime 3D Object Reconstruction Using Multi-Modal Variational Autoencoder
    Yu, Hyeonwoo
    Oh, Jean
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2022, 7 (02) : 2162 - 2169
  • [4] A novel transformer autoencoder for multi-modal emotion recognition with incomplete data
    Cheng, Cheng
    Liu, Wenzhe
    Fan, Zhaoxin
    Feng, Lin
    Jia, Ziyu
    [J]. Neural Networks, 2024, 172
  • [5] A novel transformer autoencoder for multi-modal emotion recognition with incomplete data
    Cheng, Cheng
    Liu, Wenzhe
    Fan, Zhaoxin
    Feng, Lin
    Jia, Ziyu
    [J]. NEURAL NETWORKS, 2024, 172
  • [6] MULTI-VIEW VARIATIONAL RECURRENT NEURAL NETWORK FOR HUMAN EMOTION RECOGNITION USING MULTI-MODAL BIOLOGICAL SIGNALS
    Moroto, Yuya
    Maeda, Keisuke
    Ogawa, Takahiro
    Haseyama, Miki
    [J]. 2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2023, : 2925 - 2929
  • [7] TIME-LAG AWARE MULTI-MODAL VARIATIONAL AUTOENCODER USING BASEBALL VIDEOS AND TWEETS FOR PREDICTION OF IMPORTANT SCENES
    Hirasawa, Kaito
    Maeda, Keisuke
    Ogawa, Takahiro
    Haseyama, Miki
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2021, : 2678 - 2682
  • [8] A Multi-Modal Approach to Sensing Human Emotion
    Gibilisco, Hannah
    Laubenberger, Michael
    Spiridonov, Valerii
    Belga, Jacob
    Hallstrom, Jason O.
    Peluso, Paul R.
    [J]. 2018 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2018, : 2499 - 2502
  • [9] Hidden Emotion Detection using Multi-modal Signals
    Kim, Dae Ha
    Song, Byung Cheol
    [J]. EXTENDED ABSTRACTS OF THE 2021 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS (CHI'21), 2021,
  • [10] Facial emotion recognition using multi-modal information
    De Silva, LC
    Miyasato, T
    Nakatsu, R
    [J]. ICICS - PROCEEDINGS OF 1997 INTERNATIONAL CONFERENCE ON INFORMATION, COMMUNICATIONS AND SIGNAL PROCESSING, VOLS 1-3: THEME: TRENDS IN INFORMATION SYSTEMS ENGINEERING AND WIRELESS MULTIMEDIA COMMUNICATIONS, 1997, : 397 - 401