Jointly Trained Variational Autoencoder for Multi-Modal Sensor Fusion

被引:5
|
作者
Korthals, Timo [1 ]
Hesse, Marc [1 ]
Leitner, Juergen [2 ]
Melnik, Andrew [3 ]
Rueckert, Ulrich [1 ]
机构
[1] Bielefeld Univ, Cognitron & Sensor Syst, Bielefeld, Germany
[2] Queensland Univ Technol, Australian Ctr Robot Vis, Brisbane, Qld, Australia
[3] Bielefeld Univ, Neuroinformat Grp, Bielefeld, Germany
关键词
Multi-Modal Fusion; Deep Generative Model; Variational Autoencoder;
D O I
10.23919/fusion43075.2019.9011314
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This work presents the novel multi-modal Variational Autoencoder approach M(2)VAE which is derived from the complete marginal joint log-likelihood. This allows the end-to-end training of Bayesian information fusion on raw data for all subsets of a sensor setup. Furthermore, we introduce the concept of in-place fusion applicable to distributed sensing where latent embeddings of observations need to be fused with new data. To facilitate in-place fusion even on raw data, we introduced the concept of a re-encoding loss that stabilizes the decoding and makes visualization of latent statistics possible. We also show that the M(2)VAE finds a coherent latent embedding, such that a single nave Bayes classifier performs equally well on all permutations of a bi-modal Mixture-of-Gaussians signal. Finally, we show that our approach outperforms current VAE approaches on a bi-modal MNIST & fashion-MNIST data set and works sufficiently well as a preprocessing on a tri-modal simulated camera & LiDAR data set from the Gazebo simulator.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] MULTI-MODAL RECURRENT FUSION FOR INDOOR LOCALIZATION
    Yu, Jianyuan
    Wang, Pu
    Koike-Akino, Toshiaki
    Orlik, Philip, V
    [J]. 2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 5083 - 5087
  • [42] COMMUTING CONDITIONAL GANS FOR MULTI-MODAL FUSION
    Roheda, Siddharth
    Krim, Hamid
    Riggan, Benjamin S.
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 3197 - 3201
  • [43] Efficient Multi-Modal Fusion with Diversity Analysis
    Qu, Shuhui
    Kang, Yan
    Lee, Janghwan
    [J]. PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2021, 2021, : 2663 - 2670
  • [44] Multi-Modal Data Fusion for Big Events
    Papacharalapous, A. E.
    Hovelynck, Stefan
    Cats, O.
    Lankhaar, J. W.
    Daamen, W.
    van Oort, N.
    van Lint, J. W. C.
    [J]. IEEE INTELLIGENT TRANSPORTATION SYSTEMS MAGAZINE, 2015, 7 (04) : 5 - 10
  • [45] An overview of multi-modal medical image fusion
    Du, Jiao
    Li, Weisheng
    Lu, Ke
    Xiao, Bin
    [J]. NEUROCOMPUTING, 2016, 215 : 3 - 20
  • [46] Multi-modal decision fusion for continuous authentication
    Fridman, Lex
    Stolerman, Ariel
    Acharya, Sayandeep
    Brennan, Patrick
    Juola, Patrick
    Greenstadt, Rachel
    Kam, Moshe
    [J]. COMPUTERS & ELECTRICAL ENGINEERING, 2015, 41 : 142 - 156
  • [47] A multi-modal health data fusion and analysis method based on body sensor network
    Wang, Lei
    Chen, Yibo
    Zhao, Zhenying
    Zhao, Lingxiao
    Li, Jin
    Li, Cuimin
    [J]. INTERNATIONAL JOURNAL OF SERVICES TECHNOLOGY AND MANAGEMENT, 2019, 25 (5-6) : 474 - 491
  • [48] Probabilistic multi-modal depth estimation based on camera-LiDAR sensor fusion
    Obando-Ceron, Johan S.
    Romero-Cano, Victor
    Monteiro, Sildomar
    [J]. MACHINE VISION AND APPLICATIONS, 2023, 34 (05)
  • [49] Multi-modal Force/Vision Sensor Fusion in 6-DOF Pose Tracking
    Alkkiomaki, Olli
    Kyrki, Ville
    Liu, Yong
    Handroos, Heikki
    Kalviainen, Heikki
    [J]. ICAR: 2009 14TH INTERNATIONAL CONFERENCE ON ADVANCED ROBOTICS, VOLS 1 AND 2, 2009, : 476 - +
  • [50] Multi-modal sensor fusion using a probabilistic aggregation scheme for people detection and tracking
    Martin, C.
    Schaffernicht, E.
    Scheidig, A.
    Gross, H. -M.
    [J]. ROBOTICS AND AUTONOMOUS SYSTEMS, 2006, 54 (09) : 721 - 728