A new feature encoding scheme for HIV-1 protease cleavage site prediction

被引:22
|
作者
Gok, Murat [1 ]
Ozcerit, Ahmet Turan [2 ]
机构
[1] Yalova Univ, Muhendislik Fak, Yalova, Turkey
[2] Sakarya Univ, Sakarya, Turkey
来源
NEURAL COMPUTING & APPLICATIONS | 2013年 / 22卷 / 7-8期
关键词
HIV-1 protease specificity; Feature encoding scheme; Peptide classification; Feature extraction; FEATURE-EXTRACTION; CLASSIFICATION;
D O I
10.1007/s00521-012-0967-5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
HIV-1 protease has been the subject of intense research for deciphering HIV-1 virus replication process for decades. Knowledge of the substrate specificity of HIV-1 protease will enlighten the way of development of HIV-1 protease inhibitors. In the prediction of HIV-1 protease cleavage site techniques, various feature encoding techniques and machine learning algorithms have been used frequently. In this paper, a new feature amino acid encoding scheme is proposed to predict HIV-1 protease cleavage sites. In the proposed method, we combined orthonormal encoding and Taylor's venn-diagram. We used linear support vector machines as the classifier in the tests. We also analyzed our technique by comparing some feature encoding techniques. The tests are carried out on PR-1625 and PR-3261 datasets. Experimental results show that our amino acid encoding technique leads to better classification performance than other encoding techniques on a standalone classifier.
引用
收藏
页码:1757 / 1761
页数:5
相关论文
共 50 条
  • [21] Specificity rule discovery in HIV-1 protease cleavage site analysis
    Kim, Hyeoncheol
    Zhang, Yiying
    Heo, Yong-Seok
    Oh, Heung-Bum
    Chen, Su-Shing
    [J]. COMPUTATIONAL BIOLOGY AND CHEMISTRY, 2008, 32 (01) : 72 - 79
  • [22] Multi-objective optimization with majority voting ensemble of classifiers for prediction of HIV-1 protease cleavage site
    Palmal, Susmita
    Saha, Sriparna
    Tripathy, Somanath
    [J]. SOFT COMPUTING, 2023, 27 (17) : 12211 - 12221
  • [23] Multi-objective optimization with majority voting ensemble of classifiers for prediction of HIV-1 protease cleavage site
    Susmita Palmal
    Sriparna Saha
    Somanath Tripathy
    [J]. Soft Computing, 2023, 27 : 12211 - 12221
  • [24] Cleavage of cellular proteins by the HIV-1 protease
    Korant, BD
    Rizzo, CJ
    Lu, ZC
    Strack, P
    Frey, MW
    [J]. PROTEOLYSIS IN CELL FUNCTIONS, 1997, 13 : 520 - 523
  • [25] AUTOPROTEOLYTIC CLEAVAGE OF PURIFIED HIV-1 PROTEASE
    FORSBERG, G
    ZACHRISSON, K
    LARSSON, B
    LEVINE, RL
    HARTMANIS, M
    [J]. FASEB JOURNAL, 1991, 5 (04): : A453 - A453
  • [26] The active site of HIV-1 protease
    Mager, PP
    [J]. MEDICINAL RESEARCH REVIEWS, 2001, 21 (04) : 348 - 353
  • [27] Prediction of HIV-1 protease cleavage site from octapeptide sequence information using selected classifiers and hybrid descriptors
    Emmanuel Onah
    Philip F. Uzor
    Ikenna Calvin Ugwoke
    Jude Uche Eze
    Sunday Tochukwu Ugwuanyi
    Ifeanyi Richard Chukwudi
    Akachukwu Ibezim
    [J]. BMC Bioinformatics, 23
  • [28] Prediction of HIV-1 protease cleavage site from octapeptide sequence information using selected classifiers and hybrid descriptors
    Onah, Emmanuel
    Uzor, Philip F.
    Ugwoke, Ikenna Calvin
    Eze, Jude Uche
    Ugwuanyi, Sunday Tochukwu
    Chukwudi, Ifeanyi Richard
    Ibezim, Akachukwu
    [J]. BMC BIOINFORMATICS, 2022, 23 (01)
  • [29] Cognitive Framework for HIV-1 Protease Cleavage Site Classification Using Evolutionary Algorithm
    Deepak Singh
    Dilip Singh Sisodia
    Pradeep Singh
    [J]. Arabian Journal for Science and Engineering, 2019, 44 : 9007 - 9027
  • [30] Cognitive Framework for HIV-1 Protease Cleavage Site Classification Using Evolutionary Algorithm
    Singh, Deepak
    Sisodia, Dilip Singh
    Singh, Pradeep
    [J]. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2019, 44 (11) : 9007 - 9027