Structure of trajectories of complex-matrix eigenvalues in the Hermitian-non-Hermitian transition

被引:8
|
作者
Bohigas, O. [1 ]
De Carvalho, J. X. [2 ]
Pato, M. P. [3 ]
机构
[1] Univ Paris 11, CNRS, UMR8626, LPTMS, F-91405 Orsay, France
[2] Univ Fed Rio de Janeiro, BR-2525000 Duque De Caxias, RJ, Brazil
[3] Univ Sao Paulo, Inst Fis, BR-05314970 Sao Paulo, Brazil
来源
PHYSICAL REVIEW E | 2012年 / 86卷 / 03期
基金
巴西圣保罗研究基金会;
关键词
STATISTICS; ENSEMBLES; UNITARY; SYSTEMS; CHAOS;
D O I
10.1103/PhysRevE.86.031118
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The statistical properties of trajectories of eigenvalues of Gaussian complex matrices whose Hermitian condition is progressively broken are investigated. It is shown how the ordering on the real axis of the real eigenvalues is reflected in the structure of the trajectories and also in the final distribution of the eigenvalues in the complex plane.
引用
收藏
页数:4
相关论文
共 50 条