Generalized eigenvalues of a definite Hermitian matrix pair

被引:0
|
作者
Li, CK
Mathias, R
机构
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note, we study some basic properties of generalized eigenvalues of a definite Hermitian matrix pair. In particular, we prove an interlacing theorem and a minimax theorem. We also obtain upper bounds for the variation of the generalized eigenvalues under perturbation. These results extend and improve those of R.-C. Li, J.-g. Sun, and G.W. Stewart on the topic. (C) 1998 Elsevier Science Inc.
引用
收藏
页码:309 / 321
页数:13
相关论文
共 50 条
  • [1] RELATIVE EIGENVALUES OF A DEFINITE MATRIX PAIR
    SUN, JG
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 1990, 139 : 253 - 267
  • [2] The nearest definite pair for the Hermitian generalized eigenvalue problem
    Cheng, SH
    Higham, NJ
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 1999, 303 : 63 - 76
  • [3] DISTANCE PROBLEMS FOR HERMITIAN MATRIX PENCILS WITH EIGENVALUES OF DEFINITE TYPE
    Bora, Shreemayee
    Srivastava, Ravi
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2016, 37 (01) : 53 - 85
  • [4] Neural network for solving generalized eigenvalues of matrix pair
    Yang, HB
    Jiao, LC
    [J]. 2000 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, PROCEEDINGS, VOLS I-VI, 2000, : 3478 - 3481
  • [5] A Hoffman-Wielandt-type residual bound for generalized eigenvalues of a definite pair
    Chen, Xiao Shan
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2013, 237 (01) : 208 - 214
  • [6] Hermitian matrix polynomials with real eigenvalues of definite type. Part I: Classification
    Al-Ammari, Maha
    Tisseur, Francoise
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (10) : 3954 - 3973
  • [7] POSITIVE DEFINITE HERMITIAN MATRIX
    HOLLAND, F
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1977, 84 (09): : 744 - 745
  • [8] GENERALIZED CANONICAL FACTORIZATION OF MATRIX AND OPERATOR-FUNCTIONS WITH DEFINITE HERMITIAN PART
    RAN, ACM
    RODMAN, L
    [J]. INTEGRAL EQUATIONS AND OPERATOR THEORY, 1992, 15 (04) : 673 - 696
  • [9] On Eigenvalues of Hermitian-Adjacency Matrix
    Babarinsa, Olayiwola
    Sofi, Azfi Zaidi Mohammad
    Ibrahim, Mohd Asrul Hery
    Kamarulhaili, Hailiza
    Bashir, Dial
    [J]. COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2020, 11 (02): : 215 - 220
  • [10] A neurodynamic approach to compute the generalized eigenvalues of symmetric positive matrix pair
    Feng, Jiqiang
    Yan, Su
    Qin, Sitian
    Han, Wen
    [J]. NEUROCOMPUTING, 2019, 359 : 420 - 426