Deep learning for cerebral angiography segmentation from non-contrast computed tomography

被引:8
|
作者
Klimont, Michal [1 ,2 ]
Oronowicz-Jaskowiak, Agnieszka [2 ,3 ]
Flieger, Mateusz [2 ]
Rzeszutek, Jacek [2 ]
Juszkat, Robert [1 ]
Jonczyk-Potoczna, Katarzyna [4 ]
机构
[1] Poznan Univ Med Sci, Dept Radiol, Poznan, Poland
[2] Fast Radiol, Poznan, Poland
[3] Natl Inst Oncol, Dept Radiol 1, Warsaw, Poland
[4] Poznan Univ Med Sci, Dept Paediat Radiol, Poznan, Poland
来源
PLOS ONE | 2020年 / 15卷 / 07期
关键词
D O I
10.1371/journal.pone.0237092
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Cerebral computed tomography angiography is a widely available imaging technique that helps in the diagnosis of vascular pathologies. Contrast administration is needed to accurately assess the arteries. On non-contrast computed tomography, arteries are hardly distinguishable from the brain tissue, therefore, radiologists do not consider this imaging modality appropriate for the evaluation of vascular pathologies. There are known contraindications to administering iodinated contrast media, and in these cases, the patient has to undergo another examination to visualize cerebral arteries, such as magnetic resonance angiography. Deep learning for image segmentation has proven to perform well on medical data for a variety of tasks. The aim of this research was to apply deep learning methods to segment cerebral arteries on non-contrast computed tomography scans and consequently, generate angiographies without the need for contrast administration. The dataset for this research included 131 patients who underwent brain non-contrast computed tomography directly followed by computed tomography with contrast administration. Then, the segmentations of arteries were generated and aligned with non-contrast computed tomography scans. A deep learning model based on the U-net architecture was trained to perform the segmentation of blood vessels on non-contrast computed tomography. An evaluation was performed on separate test data, as well as using cross-validation, reaching Dice coefficients of 0.638 and 0.673, respectively. This study proves that deep learning methods can be leveraged to quickly solve problems that are difficult and time-consuming for a human observer, therefore providing physicians with additional information on the patient. To encourage the further development of similar tools, all code used for this research is publicly available.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Non-contrast computed tomography for the diagnosis of non-traumatic subarachnoid hemorrhage
    Suazo, Yerko
    Rada, Gabriel
    MEDWAVE, 2018, 18 (07):
  • [42] Automatic segmentation of multiple cardiovascular structures from cardiac computed tomography angiography images using deep learning
    Baskaran, Lohendran
    Al'Aref, Subhi J.
    Maliakal, Gabriel
    Lee, Benjamin C.
    Xu, Zhuoran
    Choi, Jeong W.
    Lee, Sang-Eun
    Sung, Ji Min
    Lin, Fay Y.
    Dunham, Simon
    Mosadegh, Bobak
    Kim, Yong-Jin
    Gottlieb, Ilan
    Lee, Byoung Kwon
    Chun, Eun Ju
    Cademartiri, Filippo
    Maffei, Erica
    Marques, Hugo
    Shin, Sanghoon
    Choi, Jung Hyun
    Chinnaiyan, Kavitha
    Hadamitzky, Martin
    Conte, Edoardo
    Andreini, Daniele
    Pontone, Gianluca
    Budoff, Matthew J.
    Leipsic, Jonathon A.
    Raff, Gilbert L.
    Virmani, Renu
    Samady, Habib
    Stone, Peter H.
    Berman, Daniel S.
    Narula, Jagat
    Bax, Jeroen J.
    Chang, Hyuk-Jae
    Min, James K.
    Shaw, Leslee J.
    PLOS ONE, 2020, 15 (05):
  • [43] Non-contrast computed tomography characteristics in a large cohort of cystinuria patients
    Hannah Warren
    Daniel Poon
    Rohit Srinivasan
    Kerushan Thomas
    Giles Rottenberg
    Matthew Bultitude
    Kay Thomas
    World Journal of Urology, 2021, 39 : 2753 - 2757
  • [44] Non-contrast computed tomography features predict intraventricular hemorrhage growth
    Nawabi, Jawed
    Schlunk, Frieder
    Dell Orco, Andrea
    Elsayed, Sarah
    Mazzacane, Federico
    Desser, Dmitriy
    Vu, Ly
    Vogt, Estelle
    Cao, Haoyin
    Boehmer, Maik F. H.
    Akkurt, Burak Han
    Sporns, Peter B.
    Pasi, Marco
    Jensen-Kondering, Ulf
    Broocks, Gabriel
    Penzkofer, Tobias
    Fiehler, Jens
    Padovani, Alessandro
    Hanning, Uta
    Morotti, Andrea
    EUROPEAN RADIOLOGY, 2023, 33 (11) : 7807 - 7817
  • [45] Uncertainty-aware deep-learning model for prediction of supratentorial hematoma expansion from admission non-contrast head computed tomography scan
    Tran, Anh T.
    Zeevi, Tal
    Haider, Stefan P.
    Abou Karam, Gaby
    Berson, Elisa R.
    Tharmaseelan, Hishan
    Qureshi, Adnan I.
    Sanelli, Pina C.
    Werring, David J.
    Malhotra, Ajay
    Petersen, Nils H.
    de Havenon, Adam
    Falcone, Guido J.
    Sheth, Kevin N.
    Payabvash, Seyedmehdi
    NPJ DIGITAL MEDICINE, 2024, 7 (01)
  • [46] Uncertainty-aware deep-learning model for prediction of supratentorial hematoma expansion from admission non-contrast head computed tomography scan
    Anh T. Tran
    Tal Zeevi
    Stefan P. Haider
    Gaby Abou Karam
    Elisa R. Berson
    Hishan Tharmaseelan
    Adnan I. Qureshi
    Pina C. Sanelli
    David J. Werring
    Ajay Malhotra
    Nils H. Petersen
    Adam de Havenon
    Guido J. Falcone
    Kevin N. Sheth
    Seyedmehdi Payabvash
    npj Digital Medicine, 7
  • [47] NON-CONTRAST COMPUTED TOMOGRAPHY CHARACTERISTICS IN A LARGE COHORT OF CYSTINURIA PATIENTS
    Warren, Hannah
    Poon, Daniel
    Srinivasan, Rohit
    Rottenberg, Giles
    Bultitude, Matt
    Thomas, Kay
    JOURNAL OF UROLOGY, 2020, 203 : E528 - E529
  • [48] Non-contrast computed tomography features predict intraventricular hemorrhage growth
    Jawed Nawabi
    Frieder Schlunk
    Andrea Dell’Orco
    Sarah Elsayed
    Federico Mazzacane
    Dmitriy Desser
    Ly Vu
    Estelle Vogt
    Haoyin Cao
    Maik F. H. Böhmer
    Burak Han Akkurt
    Peter B. Sporns
    Marco Pasi
    Ulf Jensen-Kondering
    Gabriel Broocks
    Tobias Penzkofer
    Jens Fiehler
    Alessandro Padovani
    Uta Hanning
    Andrea Morotti
    European Radiology, 2023, 33 : 7807 - 7817
  • [49] NON-CONTRAST QUANTIFICATION OF MYOCARDIAL FIBROSIS WITH DUAL ENERGY COMPUTED TOMOGRAPHY
    Kumar, Vidhya
    Mcelhanon, Kevin
    Xu, Zhaobin
    Beck, Eric
    He, Xin
    Simonetti, Orlando
    Weisleder, Noah
    Raman, Subha
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2017, 69 (11) : 1504 - 1504
  • [50] Random expert sampling for deep learning segmentation of acute ischemic stroke on non-contrast CT
    Ostmeier, Sophie
    Axelrod, Brian
    Liu, Yongkai
    Yu, Yannan
    Jiang, Bin
    Yuen, Nicole
    Pulli, Benjamin
    Verhaaren, Benjamin F. J.
    Kaka, Hussam
    Wintermark, Max
    Michel, Patrik
    Mahammedi, Abdelkader
    Federau, Christian
    Lansberg, Maarten G.
    Albers, Gregory W.
    Moseley, Michael E.
    Zaharchuk, Gregory
    Heit, Jeremy J.
    JOURNAL OF NEUROINTERVENTIONAL SURGERY, 2025, 17 (01)