Revealing architectural order with quantitative label-free imaging and deep learning

被引:46
|
作者
Guo, Syuan-Ming [1 ]
Yeh, Li-Hao [1 ]
Folkesson, Jenny [1 ]
Ivanov, Ivan E. [1 ]
Krishnan, Anitha P. [1 ,4 ]
Keefe, Matthew G. [2 ]
Hashemi, Ezzat [3 ]
Shin, David [2 ]
Chhun, Bryant B. [1 ]
Cho, Nathan H. [1 ,5 ]
Leonetti, Manuel D. [1 ]
Han, May H. [3 ]
Nowakowski, Tomasz J. [2 ]
Mehta, Shalin B. [1 ]
机构
[1] Chan Zuckerberg Biohub, San Francisco, CA 94158 USA
[2] Univ Calif San Francisco, Dept Anat, San Francisco, CA 94143 USA
[3] Stanford Univ, Dept Neurol, Stanford, CA 94305 USA
[4] Genentech Inc, San Francisco, CA USA
[5] Univ Calif San Francisco, San Francisco, CA 94143 USA
来源
ELIFE | 2020年 / 9卷
关键词
PHASE MICROSCOPY; ORIENTATION; MYELINATION; TRANSPORT; HISTOLOGY; DYNAMICS; ARRAY;
D O I
10.7554/eLife.55502
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We report quantitative label-free imaging with phase and polarization (QLIPP) for simultaneous measurement of density, anisotropy, and orientation of structures in unlabeled live cells and tissue slices. We combine QLIPP with deep neural networks to predict fluorescence images of diverse cell and tissue structures. QLIPP images reveal anatomical regions and axon tract orientation in prenatal human brain tissue sections that are not visible using bright-field imaging. We report a variant of U-Net architecture, multi-channel 2.5D U-Net, for computationally efficient prediction of fluorescence images in three dimensions and over large fields of view. Further, we develop data normalization methods for accurate prediction of myelin distribution over large brain regions. We show that experimental defects in labeling the human tissue can be rescued with quantitative label-free imaging and neural network model. We anticipate that the proposed method will enable new studies of architectural order at spatial scales ranging from organelles to tissue.
引用
收藏
页码:1 / 38
页数:33
相关论文
共 50 条
  • [31] Imaging goes label-free
    Doerr, Allison
    NATURE METHODS, 2009, 6 (02) : 116 - 116
  • [32] Imaging goes label-free
    Allison Doerr
    Nature Methods, 2009, 6 : 116 - 116
  • [33] Label-free 3-D quantitative phase imaging cytometry with deep learning: identifying naive, memory, and senescent T cells
    Ryu, DongHun
    Kim, Kyunghwan
    Cho, Hayeon
    Dao, Khoi
    Kim, Young Seo
    Ahn, Daewoong
    Min, Hyun-Seok
    Shin, Eui-Cheol
    Park, YongKeun
    JOURNAL OF IMMUNOLOGY, 2020, 204 (01):
  • [34] Ptychography - label-free, high contrast and quantitative imaging of the cell cycle
    Suman, R.
    O'Toole, P.
    Langley, K.
    MOLECULAR BIOLOGY OF THE CELL, 2013, 24
  • [35] Label-free characterization of organoids with quantitative confocal Raman spectral imaging
    Coughlan, Mark F.
    Perelman, Lev T.
    CELL REPORTS METHODS, 2023, 3 (04): : 1 - 2
  • [36] To label or not: the need for validation in label-free imaging
    Szulczewski, Joseph M.
    Yesilkoy, Filiz
    Ulland, Tyler K.
    Bartels, Randy
    Millis, Bryan A.
    Boppart, Stephen A.
    Eliceiri, Kevin W.
    JOURNAL OF BIOMEDICAL OPTICS, 2024, 29
  • [37] Label-free phytoplankton analysis by high-throughput quantitative phase imaging cytometry and machine learning
    Lai, Queenie T. K.
    Lee, Kelvin C. M.
    Wong, Kenneth K. Y.
    Tsia, Kevin K.
    2019 CONFERENCE ON LASERS AND ELECTRO-OPTICS EUROPE & EUROPEAN QUANTUM ELECTRONICS CONFERENCE (CLEO/EUROPE-EQEC), 2019,
  • [38] Label-free Methods in Quantitative Proteomics
    Wu Peng
    He Fu-Chu
    Jiang Ying
    PROGRESS IN BIOCHEMISTRY AND BIOPHYSICS, 2013, 40 (03) : 281 - 292
  • [39] Label-free quantitative detection of biomarkers
    Dave, Digant P.
    Chirvi, Sajal
    IMAGING, MANIPULATION, AND ANALYSIS OF BIOMOLECULES, CELLS, AND TISSUES VIII, 2010, 7568
  • [40] Label-Free Analyses of Minimal Residual Disease in ALL Using Deep Learning and Imaging Flow Cytometry
    Doan, Minh
    Case, Marian
    Masic, Dino
    Hennig, Holger
    McQuin, Claire
    Goodman, Allen
    Caicedo, Juan
    Wolkenhauer, Olaf
    Summers, Huw
    Carpenter, Anne E.
    Filby, Andy
    Rees, Paul
    Irving, Julie
    BLOOD, 2017, 130