Revealing architectural order with quantitative label-free imaging and deep learning

被引:46
|
作者
Guo, Syuan-Ming [1 ]
Yeh, Li-Hao [1 ]
Folkesson, Jenny [1 ]
Ivanov, Ivan E. [1 ]
Krishnan, Anitha P. [1 ,4 ]
Keefe, Matthew G. [2 ]
Hashemi, Ezzat [3 ]
Shin, David [2 ]
Chhun, Bryant B. [1 ]
Cho, Nathan H. [1 ,5 ]
Leonetti, Manuel D. [1 ]
Han, May H. [3 ]
Nowakowski, Tomasz J. [2 ]
Mehta, Shalin B. [1 ]
机构
[1] Chan Zuckerberg Biohub, San Francisco, CA 94158 USA
[2] Univ Calif San Francisco, Dept Anat, San Francisco, CA 94143 USA
[3] Stanford Univ, Dept Neurol, Stanford, CA 94305 USA
[4] Genentech Inc, San Francisco, CA USA
[5] Univ Calif San Francisco, San Francisco, CA 94143 USA
来源
ELIFE | 2020年 / 9卷
关键词
PHASE MICROSCOPY; ORIENTATION; MYELINATION; TRANSPORT; HISTOLOGY; DYNAMICS; ARRAY;
D O I
10.7554/eLife.55502
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We report quantitative label-free imaging with phase and polarization (QLIPP) for simultaneous measurement of density, anisotropy, and orientation of structures in unlabeled live cells and tissue slices. We combine QLIPP with deep neural networks to predict fluorescence images of diverse cell and tissue structures. QLIPP images reveal anatomical regions and axon tract orientation in prenatal human brain tissue sections that are not visible using bright-field imaging. We report a variant of U-Net architecture, multi-channel 2.5D U-Net, for computationally efficient prediction of fluorescence images in three dimensions and over large fields of view. Further, we develop data normalization methods for accurate prediction of myelin distribution over large brain regions. We show that experimental defects in labeling the human tissue can be rescued with quantitative label-free imaging and neural network model. We anticipate that the proposed method will enable new studies of architectural order at spatial scales ranging from organelles to tissue.
引用
收藏
页码:1 / 38
页数:33
相关论文
共 50 条
  • [21] The application of label-free imaging technologies in transdermal research for deeper mechanism revealing
    Zhang, Danping
    Bian, Qiong
    Zhou, Yi
    Huang, Qiaoling
    Gao, Jianqing
    ASIAN JOURNAL OF PHARMACEUTICAL SCIENCES, 2021, 16 (03) : 265 - 279
  • [22] Phenotypic Analysis of Microalgae Populations Using Label-Free Imaging Flow Cytometry and Deep Learning
    Isil, Cagatay
    de Haan, Kevin
    Gorocs, Zoltan
    Koydemir, Hatice Ceylan
    Peterman, Spencer
    Baum, David
    Song, Fang
    Skandakumar, Thamira
    Gumustekin, Esin
    Ozcan, Aydogan
    ACS PHOTONICS, 2021, 8 (04) : 1232 - 1242
  • [23] It's free imaging - label-free, that is
    Marx, Vivien
    NATURE METHODS, 2019, 16 (12) : 1209 - 1212
  • [24] It’s free imaging — label-free, that is
    Vivien Marx
    Nature Methods, 2019, 16 : 1209 - 1212
  • [25] Label-free tumor cells classification using deep learning and high-content imaging
    Piansaddhayanon, Chawan
    Koracharkornradt, Chonnuttida
    Laosaengpha, Napat
    Tao, Qingyi
    Ingrungruanglert, Praewphan
    Israsena, Nipan
    Chuangsuwanich, Ekapol
    Sriswasdi, Sira
    SCIENTIFIC DATA, 2023, 10 (01)
  • [26] Label-free tumor cells classification using deep learning and high-content imaging
    Chawan Piansaddhayanon
    Chonnuttida Koracharkornradt
    Napat Laosaengpha
    Qingyi Tao
    Praewphan Ingrungruanglert
    Nipan Israsena
    Ekapol Chuangsuwanich
    Sira Sriswasdi
    Scientific Data, 10
  • [27] Deep learning enables label-free tracking of heterogeneous subpopulations
    Jost, Tyler
    Gardner, Andrea
    Brock, Amy
    CANCER RESEARCH, 2023, 83 (07)
  • [28] Label-free molecular imaging
    Zhang, Junqi
    Li, Qi
    Fu, Rongxin
    Wang, Tongzhou
    Wang, Ruliang
    Huang, Guoliang
    THREE-DIMENSIONAL AND MULTIDIMENSIONAL MICROSCOPY: IMAGE ACQUISITION AND PROCESSING XXI, 2014, 8949
  • [29] Trends in Label-Free Imaging
    Chu, Shi-Wei
    Fujita, Katsumasa
    Kemper, Bjoern
    Pavillon, Nicolas
    Smith, Nicholas I.
    OPTICS COMMUNICATIONS, 2018, 422 : 1 - 2
  • [30] Label-free identification of protein aggregates using deep learning
    Ibrahim K.A.
    Grußmayer K.S.
    Riguet N.
    Feletti L.
    Lashuel H.A.
    Radenovic A.
    Nature Communications, 14 (1)