Revealing architectural order with quantitative label-free imaging and deep learning

被引:46
|
作者
Guo, Syuan-Ming [1 ]
Yeh, Li-Hao [1 ]
Folkesson, Jenny [1 ]
Ivanov, Ivan E. [1 ]
Krishnan, Anitha P. [1 ,4 ]
Keefe, Matthew G. [2 ]
Hashemi, Ezzat [3 ]
Shin, David [2 ]
Chhun, Bryant B. [1 ]
Cho, Nathan H. [1 ,5 ]
Leonetti, Manuel D. [1 ]
Han, May H. [3 ]
Nowakowski, Tomasz J. [2 ]
Mehta, Shalin B. [1 ]
机构
[1] Chan Zuckerberg Biohub, San Francisco, CA 94158 USA
[2] Univ Calif San Francisco, Dept Anat, San Francisco, CA 94143 USA
[3] Stanford Univ, Dept Neurol, Stanford, CA 94305 USA
[4] Genentech Inc, San Francisco, CA USA
[5] Univ Calif San Francisco, San Francisco, CA 94143 USA
来源
ELIFE | 2020年 / 9卷
关键词
PHASE MICROSCOPY; ORIENTATION; MYELINATION; TRANSPORT; HISTOLOGY; DYNAMICS; ARRAY;
D O I
10.7554/eLife.55502
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We report quantitative label-free imaging with phase and polarization (QLIPP) for simultaneous measurement of density, anisotropy, and orientation of structures in unlabeled live cells and tissue slices. We combine QLIPP with deep neural networks to predict fluorescence images of diverse cell and tissue structures. QLIPP images reveal anatomical regions and axon tract orientation in prenatal human brain tissue sections that are not visible using bright-field imaging. We report a variant of U-Net architecture, multi-channel 2.5D U-Net, for computationally efficient prediction of fluorescence images in three dimensions and over large fields of view. Further, we develop data normalization methods for accurate prediction of myelin distribution over large brain regions. We show that experimental defects in labeling the human tissue can be rescued with quantitative label-free imaging and neural network model. We anticipate that the proposed method will enable new studies of architectural order at spatial scales ranging from organelles to tissue.
引用
收藏
页码:1 / 38
页数:33
相关论文
共 50 条
  • [1] Rapid and label-free detection of anthrax spores using quantitative phase imaging and deep learning.
    Park, Y.
    MOLECULAR BIOLOGY OF THE CELL, 2018, 29 (26)
  • [2] Quantitative Phase Imaging for Label-Free Cytometry
    Holden, Elena
    Tarnok, Attila
    Popescu, Gabriel
    CYTOMETRY PART A, 2017, 91A (05) : 407 - 411
  • [3] Sperm-cell DNA fragmentation prediction using label-free quantitative phase imaging and deep learning
    Noy, Lioz
    Barnea, Itay
    Mirsky, Simcha K.
    Kamber, Dotan
    Levi, Mattan
    Shaked, Natan T.
    CYTOMETRY PART A, 2023, 103 (06) : 470 - 478
  • [4] Deep Learning in Label-free Cell Classification
    Claire Lifan Chen
    Ata Mahjoubfar
    Li-Chia Tai
    Ian K. Blaby
    Allen Huang
    Kayvan Reza Niazi
    Bahram Jalali
    Scientific Reports, 6
  • [5] Deep Learning in Label-free Cell Classification
    Chen, Claire Lifan
    Mahjoubfar, Ata
    Tai, Li-Chia
    Blaby, Ian K.
    Huang, Allen
    Niazi, Kayvan Reza
    Jalali, Bahram
    SCIENTIFIC REPORTS, 2016, 6
  • [6] Label-free intracellular temperature measurement by integrating Raman imaging and deep learning
    Takahashi, Hiroaki
    Kajimoto, Shinji
    Irikura, Ohsuke
    Nakabayashi, Takakazu
    CHEMISTRY LETTERS, 2025, 54 (03)
  • [7] Deep spectral learning for label-free optical imaging oximetry with uncertainty quantification
    Liu, Rongrong
    Cheng, Shiyi
    Tian, Lei
    Yi, Ji
    LIGHT-SCIENCE & APPLICATIONS, 2019, 8 (1)
  • [8] Deep spectral learning for label-free optical imaging oximetry with uncertainty quantification
    Rongrong Liu
    Shiyi Cheng
    Lei Tian
    Ji Yi
    Light: Science & Applications, 8
  • [9] Anaemias diagnosis by label-free quantitative phase imaging
    Mugnano, Martina
    Memmolo, Pasquale
    Miccio, Lisa
    Merola, Francesco
    Bianco, Vittorio
    Gambale, Antonella
    Russo, Roberta
    Andolfo, Immacolata
    Iolascon, Achille
    Ferraro, Pietro
    QUANTITATIVE PHASE IMAGING V, 2019, 10887
  • [10] Label-free quantitative imaging of conjunctival goblet cells
    Park, Noseong
    Jeon, Suil
    Kim, Seonghan
    Lee, Jungbin
    Ryu, Jin Suk
    Choi, Wan Jae
    Yoon, Chang Ho
    Joo, Chulmin
    Kim, Ki Hean
    OCULAR SURFACE, 2025, 36 : 156 - 163