SPANet: Successive Pooling Attention Network for Semantic Segmentation of Remote Sensing Images

被引:50
|
作者
Sun, Le [1 ,2 ]
Cheng, Shiwei [1 ]
Zheng, Yuhui [1 ]
Wu, Zebin [3 ]
Zhang, Jianwei [4 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Sch Comp Sci, Nanjing 210044, Peoples R China
[2] Nanjing Univ Informat Sci & Technol, Engn Res Ctr Digital Forens, Minist Educ, Nanjing 210044, Peoples R China
[3] Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Nanjing 210094, Peoples R China
[4] Nanjing Univ Informat Sci & Technol, Sch Math & Stat, Nanjing 210044, Peoples R China
基金
中国国家自然科学基金;
关键词
Feature extraction; Semantics; Image segmentation; Remote sensing; Data mining; Context modeling; Decoding; Attention mechanism; convolutional neural network; remote sensing images; semantic segmentation; successive pooling; MULTISCALE;
D O I
10.1109/JSTARS.2022.3175191
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In the convolutional neural network, the precise segmentation of small-scale objects and object boundaries in remote sensing images is a great challenge. As the model gets deeper, low-level features with geometric information and high-level features with semantic information cannot be obtained simultaneously. To alleviate this problem, a successive pooling attention network (SPANet) was proposed. The SPANet mainly consists of ResNet50 as the backbone, successive pooling attention module (SPAM), and feature fusion module (FFM). Specifically, the SPANet uses two parallel branches to extract high-level features by ResNet50 and low-level features by the first 11 layers of ResNet50. Then, both the high- and low-level features are fed to the SPAM, which is mainly composed of a successive pooling operator and a self-attention submodule, for further extracting deeper multiscale and salient features. In addition, the low- and high-level features after the SPAM are fused by the FFM to achieve the complementarity of spatial and geometric information. This fusion module alleviates the problem of the accurate segmentation of object edges. Finally, the high-level features and enhanced low-level features of the two branches are fused to obtain the final prediction results. Experiments show that the proposed SPANet achieves a good segmentation effect compared with other models on two remotely sensed datasets.
引用
收藏
页码:4045 / 4057
页数:13
相关论文
共 50 条
  • [1] Class Attention Network for Semantic Segmentation of Remote Sensing Images
    Rao, Zhibo
    He, Mingyi
    Dai, Yuchao
    2020 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA ASC), 2020, : 150 - 155
  • [2] Threshold Attention Network for Semantic Segmentation of Remote Sensing Images
    Long, Wei
    Zhang, Yongjun
    Cui, Zhongwei
    Xu, Yujie
    Zhang, Xuexue
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [3] Orientation Attention Network for semantic segmentation of remote sensing images?
    Wang, Junxiao
    Feng, Zhixi
    Jiang, Yao
    Yang, Shuyuan
    Meng, Huixiao
    KNOWLEDGE-BASED SYSTEMS, 2023, 267
  • [4] Semantic Segmentation With Attention Mechanism for Remote Sensing Images
    Zhao, Qi
    Liu, Jiahui
    Li, Yuewen
    Zhang, Hong
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [5] Semantic Attention and Scale Complementary Network for Instance Segmentation in Remote Sensing Images
    Zhang, Tianyang
    Zhang, Xiangrong
    Zhu, Peng
    Tang, Xu
    Li, Chen
    Jiao, Licheng
    Zhou, Huiyu
    IEEE TRANSACTIONS ON CYBERNETICS, 2022, 52 (10) : 10999 - 11013
  • [6] Multi-scale attention fusion network for semantic segmentation of remote sensing images
    Wen, Zhiqiang
    Huang, Hongxu
    Liu, Shuai
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2023, 44 (24) : 7909 - 7926
  • [7] Graph Attention Guidance Network With Knowledge Distillation for Semantic Segmentation of Remote Sensing Images
    Zhou, Wujie
    Fan, Xiaomin
    Yan, Weiqing
    Shan, Shengdao
    Jiang, Qiuping
    Hwang, Jenq-Neng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [8] A Deformable Attention Network for High-Resolution Remote Sensing Images Semantic Segmentation
    Zuo, Renxiang
    Zhang, Guangyun
    Zhang, Rongting
    Jia, Xiuping
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [9] MCAFNet: A Multiscale Channel Attention Fusion Network for Semantic Segmentation of Remote Sensing Images
    Yuan, Min
    Ren, Dingbang
    Feng, Qisheng
    Wang, Zhaobin
    Dong, Yongkang
    Lu, Fuxiang
    Wu, Xiaolin
    REMOTE SENSING, 2023, 15 (02)
  • [10] A Synergistical Attention Model for Semantic Segmentation of Remote Sensing Images
    Li, Xin
    Xu, Feng
    Liu, Fan
    Lyu, Xin
    Tong, Yao
    Xu, Zhennan
    Zhou, Jun
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61