Graph Attention Guidance Network With Knowledge Distillation for Semantic Segmentation of Remote Sensing Images

被引:17
|
作者
Zhou, Wujie [1 ,2 ]
Fan, Xiaomin [1 ]
Yan, Weiqing [2 ]
Shan, Shengdao
Jiang, Qiuping [3 ]
Hwang, Jenq-Neng [4 ]
机构
[1] Zhejiang Univ Sci & Technol, Sch Informat & Elect Engn, Hangzhou 310023, Peoples R China
[2] Nanyang Technol Univ, Sch Comp Sci & Engn, Singapore 308232, Singapore
[3] Ningbo Univ, Sch Informat Sci & Engn, Ningbo 315211, Peoples R China
[4] Univ Washington, Dept Elect Engn, Seattle, WA 98105 USA
基金
中国国家自然科学基金;
关键词
Index Terms-Dense cross-decoder (DCD); graph convolution; high-resolution remote sensing images (HRRSIs); knowledge distillation (KD); semantic segmentation; MULTISCALE;
D O I
10.1109/TGRS.2023.3311480
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Deep learning has become a popular method for studying the semantic segmentation of high-resolution remote sensing images (HRRSIs). Existing methods have adopted convolutional neural networks (CNNs) to achieve better segmentation accuracy of HRRSIs, and the success of these models often depends on the model complexity and parameter quantity. However, the deployment of these models on equipment with limited resources is a significant challenge. To solve this problem, a lightweight student network framework-a graph attention guidance network (GAGNet) with knowledge distillation (KD), called GAGNet-S*-is proposed in this study, which distills knowledge from pretrained large teacher network (GAGNet-T) and builds reliable weak labels to optimize untrained student network (GAGNet-S). Inspired by the graph convolution network, this study designs a graph convolution module called the attention-graph decoder (AGD), which combines attention mechanisms with graph convolution to optimize image features and improve segmentation accuracy in the semantic segmentation task of HRRSIs. In addition, a dense cross-decoder (DCD) was designed for multiscale dense fusion, which utilizes rich semantic information in the high-level features to guide and refine the low-level features from the bottom up. Extensive experiments showed that GAGNet-S* (GAGNet-S with KD) achieved excellent segmentation performance on two widely used datasets: Potsdam and Vaihingen. The code and models are available at https://github.com/F8AoMn/GAGNet-KD.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Class Attention Network for Semantic Segmentation of Remote Sensing Images
    Rao, Zhibo
    He, Mingyi
    Dai, Yuchao
    2020 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA ASC), 2020, : 150 - 155
  • [2] Threshold Attention Network for Semantic Segmentation of Remote Sensing Images
    Long, Wei
    Zhang, Yongjun
    Cui, Zhongwei
    Xu, Yujie
    Zhang, Xuexue
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [3] Orientation Attention Network for semantic segmentation of remote sensing images?
    Wang, Junxiao
    Feng, Zhixi
    Jiang, Yao
    Yang, Shuyuan
    Meng, Huixiao
    KNOWLEDGE-BASED SYSTEMS, 2023, 267
  • [4] HANet: Hierarchical Attention Network for Remote Sensing Images Semantic Segmentation
    Zhang, Hongming
    Yang, Guang
    Gao, Zhengjie
    Shen, Yinwei
    Tang, Hengao
    Wang, Tao
    Han, Yamin
    PATTERN RECOGNITION AND COMPUTER VISION, PT XIII, PRCV 2024, 2025, 15043 : 386 - 400
  • [5] PEGNet: Progressive Edge Guidance Network for Semantic Segmentation of Remote Sensing Images
    Pan, Shaoming
    Tao, Yulong
    Nie, Congchong
    Chong, Yanwen
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2021, 18 (04) : 637 - 641
  • [6] Semantic Segmentation With Attention Mechanism for Remote Sensing Images
    Zhao, Qi
    Liu, Jiahui
    Li, Yuewen
    Zhang, Hong
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [7] Semantic Attention and Scale Complementary Network for Instance Segmentation in Remote Sensing Images
    Zhang, Tianyang
    Zhang, Xiangrong
    Zhu, Peng
    Tang, Xu
    Li, Chen
    Jiao, Licheng
    Zhou, Huiyu
    IEEE TRANSACTIONS ON CYBERNETICS, 2022, 52 (10) : 10999 - 11013
  • [8] SPANet: Successive Pooling Attention Network for Semantic Segmentation of Remote Sensing Images
    Sun, Le
    Cheng, Shiwei
    Zheng, Yuhui
    Wu, Zebin
    Zhang, Jianwei
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 4045 - 4057
  • [9] Knowledge and Spatial Pyramid Distance-Based Gated Graph Attention Network for Remote Sensing Semantic Segmentation
    Cui, Wei
    He, Xin
    Yao, Meng
    Wang, Ziwei
    Hao, Yuanjie
    Li, Jie
    Wu, Weijie
    Zhao, Huilin
    Xia, Cong
    Li, Jin
    Cui, Wenqi
    REMOTE SENSING, 2021, 13 (07)
  • [10] Frequency-Driven Edge Guidance Network for Semantic Segmentation of Remote Sensing Images
    Li, Jinsong
    Zhang, Shujun
    Sun, Yukang
    Han, Qi
    Sun, Yuanyuan
    Wang, Yimin
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 9677 - 9693