SPANet: Successive Pooling Attention Network for Semantic Segmentation of Remote Sensing Images

被引:50
|
作者
Sun, Le [1 ,2 ]
Cheng, Shiwei [1 ]
Zheng, Yuhui [1 ]
Wu, Zebin [3 ]
Zhang, Jianwei [4 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Sch Comp Sci, Nanjing 210044, Peoples R China
[2] Nanjing Univ Informat Sci & Technol, Engn Res Ctr Digital Forens, Minist Educ, Nanjing 210044, Peoples R China
[3] Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Nanjing 210094, Peoples R China
[4] Nanjing Univ Informat Sci & Technol, Sch Math & Stat, Nanjing 210044, Peoples R China
基金
中国国家自然科学基金;
关键词
Feature extraction; Semantics; Image segmentation; Remote sensing; Data mining; Context modeling; Decoding; Attention mechanism; convolutional neural network; remote sensing images; semantic segmentation; successive pooling; MULTISCALE;
D O I
10.1109/JSTARS.2022.3175191
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In the convolutional neural network, the precise segmentation of small-scale objects and object boundaries in remote sensing images is a great challenge. As the model gets deeper, low-level features with geometric information and high-level features with semantic information cannot be obtained simultaneously. To alleviate this problem, a successive pooling attention network (SPANet) was proposed. The SPANet mainly consists of ResNet50 as the backbone, successive pooling attention module (SPAM), and feature fusion module (FFM). Specifically, the SPANet uses two parallel branches to extract high-level features by ResNet50 and low-level features by the first 11 layers of ResNet50. Then, both the high- and low-level features are fed to the SPAM, which is mainly composed of a successive pooling operator and a self-attention submodule, for further extracting deeper multiscale and salient features. In addition, the low- and high-level features after the SPAM are fused by the FFM to achieve the complementarity of spatial and geometric information. This fusion module alleviates the problem of the accurate segmentation of object edges. Finally, the high-level features and enhanced low-level features of the two branches are fused to obtain the final prediction results. Experiments show that the proposed SPANet achieves a good segmentation effect compared with other models on two remotely sensed datasets.
引用
收藏
页码:4045 / 4057
页数:13
相关论文
共 50 条
  • [41] River Segmentation of Remote Sensing Images Based on Composite Attention Network
    Fan, Zhiyong
    Hou, Jianmin
    Zang, Qiang
    Chen, Yunjie
    Yan, Fei
    COMPLEXITY, 2022, 2022
  • [42] A position-aware attention network with progressive detailing for land use semantic segmentation of Remote Sensing images
    Feng, Jiangfan
    Zheng, Wei
    Gu, Zhujun
    Guo, Dongen
    Qin, Rui
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2023, 44 (21) : 6762 - 6801
  • [43] MsanlfNet: Semantic Segmentation Network With Multiscale Attention and Nonlocal Filters for High-Resolution Remote Sensing Images
    Bai, Lin
    Lin, Xiangyuan
    Ye, Zhen
    Xue, Dongling
    Yao, Cheng
    Hui, Meng
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [44] SCAttNet: Semantic Segmentation Network With Spatial and Channel Attention Mechanism for High-Resolution Remote Sensing Images
    Li, Haifeng
    Qiu, Kaijian
    Chen, Li
    Mei, Xiaoming
    Hong, Liang
    Tao, Chao
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2021, 18 (05) : 905 - 909
  • [45] Semantic segmentation of remote sensing images based on U-shaped network combined with spatial enhance attention
    Bao Y.
    Liu W.
    Li R.
    Li Q.
    Hu Q.
    Beijing Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics, 2023, 49 (07): : 1828 - 1837
  • [46] We Need to Communicate: Communicating Attention Network for Semantic Segmentation of High-Resolution Remote Sensing Images
    Meng, Xichen
    Zhu, Liqun
    Han, Yilong
    Zhang, Hanchao
    REMOTE SENSING, 2023, 15 (14)
  • [47] AANet: an attention-based alignment semantic segmentation network for high spatial resolution remote sensing images
    Xue, Gunagkuo
    Liu, Yikun
    Huang, Yuwen
    Li, Mingsong
    Yang, Gongping
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2022, 43 (13) : 4836 - 4852
  • [48] Remote sensing semantic segmentation with convolution neural network using attention mechanism
    Ni Xianyang
    Cheng Yinbao
    Wang Zhongyu
    PROCEEDINGS OF 2019 14TH IEEE INTERNATIONAL CONFERENCE ON ELECTRONIC MEASUREMENT & INSTRUMENTS (ICEMI), 2019, : 608 - 613
  • [49] DEANet: Dual Encoder with Attention Network for Semantic Segmentation of Remote Sensing Imagery
    Wei, Haoran
    Xu, Xiangyang
    Ou, Ni
    Zhang, Xinru
    Dai, Yaping
    REMOTE SENSING, 2021, 13 (19)
  • [50] Semantic segmentation of remote sensing images based on dual-channel attention mechanism
    Jiang, Jionghui
    Feng, Xi'an
    Huang, Hui
    IET IMAGE PROCESSING, 2024, 18 (09) : 2346 - 2356