On affine motions and bar frameworks in general position

被引:14
|
作者
Alfakih, A. Y. [1 ]
Ye, Yinyu [2 ]
机构
[1] Univ Windsor, Dept Math & Stat, Windsor, ON N9B 3P4, Canada
[2] Stanford Univ, Dept Management Sci & Engn, Stanford, CA 94305 USA
基金
加拿大自然科学与工程研究理事会;
关键词
Bar frameworks; Universal rigidity; Stress matrices; Points in general position; Gale transform; RIGIDITY;
D O I
10.1016/j.laa.2012.08.031
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A configuration p in r-dimensional Euclidean space is a finite collection of points (p(1), ... , p(n)) that affinely span R-r. A bar framework. denoted by G(p), in R-r is a simple graph G on n vertices together with a configuration p in R-r. A given bar framework G(p) is said to be universally rigid if there does not exist another configuration q in any Euclidean space, not obtained from p by a rigid motion, such that vertical bar vertical bar q(i) - q(j)vertical bar vertical bar = vertical bar vertical bar p(i) - p(j)vertical bar vertical bar for each edge (i, j) of G. It is known [2,7] that if configuration p is generic and bar framework G(p) in R-r admits a positive semidefinite stress matrix S of rank (n - r - 1). then G(p) is universally rigid. Connelly asked [9] whether the same result holds true if the genericity assumption of p is replaced by the weaker assumption of general position. We answer this question in the affirmative in this paper. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:31 / 36
页数:6
相关论文
共 50 条
  • [21] FRAMEWORKS WITH COORDINATED EDGE MOTIONS*
    Schulze, Bernd
    Serocold, Hattie
    Theran, Louis
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2022, 36 (04) : 2602 - 2618
  • [22] Affine motions of one-dimensional quadratic motions of nonzero curvature
    V. A. Igoshin
    E. K. Kitaeva
    Russian Mathematics, 2007, 51 (4) : 27 - 31
  • [23] Affine Motions of One-Dimensional Quadratic Motions of Nonzero Curvature
    Igoshin, V. A.
    Kitaeva, E. K.
    RUSSIAN MATHEMATICS, 2007, 51 (04) : 27 - 31
  • [24] ORIGAMI FOLDING AND BAR FRAMEWORKS
    Diaz, Alejandro R.
    PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2014, VOL 5B, 2014,
  • [25] Leaderless collective motions in affine formation control
    Garcia de Marina, Hector
    Jimenez Castellanos, Juan
    Yao, Weijia
    2021 60TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2021, : 6433 - 6438
  • [26] SOME SPACES OF AFFINE CONNECTIVITY, ADMITTING OF MOTIONS
    LEVIN, YI
    DOKLADY AKADEMII NAUK SSSR, 1961, 137 (06): : 1295 - &
  • [27] STATIONARY GROUPS OF MOTIONS OF AFFINE CONNECTIVITY SPACES
    ULANOVSKII, MA
    DOKLADY AKADEMII NAUK SSSR, 1960, 131 (01): : 34 - 36
  • [28] Integrable motions of space curves in affine geometry
    Chou, KS
    Qu, CZ
    CHAOS SOLITONS & FRACTALS, 2002, 14 (01) : 29 - 44
  • [29] Affine and nonaffine motions in sheared polydisperse emulsions
    Clara-Rahola, J.
    Brzinski, T. A.
    Semwogerere, D.
    Feitosa, K.
    Crocker, J. C.
    Sato, J.
    Breedveld, V.
    Weeks, Eric R.
    PHYSICAL REVIEW E, 2015, 91 (01):
  • [30] Affine description of multiple motions in compressed domain
    Felip, RL
    Binefa, X
    RECENT ADVANCES IN ARTIFICIAL INTELLIGENCE RESEARCH AND DEVELOPMENT, 2004, 113 : 93 - 100