Integrable motions of space curves in affine geometry

被引:43
|
作者
Chou, KS [1 ]
Qu, CZ
机构
[1] Chinese Univ Hong Kong, Dept Math, Shatin, Hong Kong, Peoples R China
[2] NW Univ Xian, Dept Math, Xian 710069, Peoples R China
关键词
D O I
10.1016/S0960-0779(01)00179-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is shown that many well-known integrable equations such as the KdV, Harry Dym, Sawada-Kotera hierarchies and the Kaup Kupershmidt, Boussinesq, Tzitzeica, Hirota-Satsuma equations naturally arise from motions of space curves in affine and centro-affine geometries. The motions of curves corresponding to travelling waves of the KdV and Sawada-Kotera equations are constructed explicitly. (C) 2002 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:29 / 44
页数:16
相关论文
共 50 条
  • [1] CLASS OF SPACE CURVES IN AFFINE DIFFERENTIAL GEOMETRY
    KREYSZIG, EO
    [J]. NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 21 (02): : A314 - A314
  • [2] Generic affine differential geometry of space curves
    Izumiya, S
    Sano, T
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1998, 128 : 301 - 314
  • [3] Higher-dimensional integrable systems induced by motions of curves in affine geometries
    Li Yan-Yan
    Qu Chang-Zheng
    [J]. CHINESE PHYSICS LETTERS, 2008, 25 (06) : 1931 - 1934
  • [4] Integrable motions of curves in projective geometries
    Li, Yanyan
    Qu, Changzheng
    Shu, Shichang
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2010, 60 (6-8) : 972 - 985
  • [5] NEW INTEGRABLE NONLINEARITIES FROM AFFINE GEOMETRY
    ANTONOWICZ, M
    SYM, A
    [J]. PHYSICS LETTERS A, 1985, 112 (1-2) : 1 - 2
  • [6] ON THE CURVES WITH AFFINE CONGRUENT ARCS IN AFFINE SPACE
    Polikanova, Irina Viktorovna
    [J]. SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2019, 16 : 1612 - 1622
  • [7] Duality for curves in affine plane geometry
    Dymara, J
    [J]. GEOMETRIAE DEDICATA, 2000, 79 (02) : 189 - 204
  • [8] Duality for Curves in Affine Plane Geometry
    Jan Dymara
    [J]. Geometriae Dedicata, 2000, 79 : 189 - 204
  • [9] Motion of curves and surfaces in affine geometry
    Qu, CZ
    Zhang, SL
    [J]. CHAOS SOLITONS & FRACTALS, 2004, 20 (05) : 1013 - 1019
  • [10] RATIONAL CURVES IN AFFINE SPACE
    ABHYANKA.S
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1971, 78 (01): : 84 - &