Mesoporous TiO2 as the support of tetraethylenepentamine for CO2 capture fromsimulated flue gas

被引:14
|
作者
Song, Fujiao [1 ]
Zhong, Qin [1 ]
Ding, Jie [1 ]
Zhao, Yunxia [1 ]
Bu, Yunfei [1 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Chem Engn, Nanjing 210094, Jiangsu, Peoples R China
来源
RSC ADVANCES | 2013年 / 3卷 / 45期
关键词
SOL-GEL METHOD; PHOTOCATALYTIC ACTIVITY; HYDROTHERMAL SYNTHESIS; CARBON-DIOXIDE; MOLECULAR-SIEVE; IONIC LIQUIDS; ADSORPTION; TITANIA; PERFORMANCE; ABSORPTION;
D O I
10.1039/c3ra42998a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Mesoporous TiO2 (MT) was prepared by a hydrothermal method and used as the supporting material for the immobilization of tetraethylenepentamine (TEPA) to develop a new type of adsorbent for CO2 capture from flue gas. The CO2 adsorption capacity increases with the increase of the TEPA loading amounts. With the maximum TEPA loading of 31 wt% onto the MT sorbent, the maximum CO2 adsorption capacity reached 2.52 mmol of CO2 g(-1) of sorbent. In the presence of an appropriate amount of water vapor, the formation of bicarbonate and hydroxylated surface on TiO2 can improve CO2 adsorption capacity from 2.64 to 2.91 mmol g(-1). However, an excess of water vapor leads to a decrease in the CO2 adsorption capacity from 2.91 to 2.65 mmol g(-1), probably attributed to the adsorption competition between water and CO2. The absorption/regeneration cycle was repeated and the CO2 adsorption capacity decreased from 2.52 to 2.41 mmol g(-1) over 5 cycles, almost completely maintained its original CO2 adsorption capacity. In addition, the effect of long-term storage on CO2 adsorption capacity is studied. After approximately one year of storage, the CO2 capacity of the MT-TEPA-31 decreased by 28% compared with the fresh sample.
引用
下载
收藏
页码:23785 / 23790
页数:6
相关论文
共 50 条
  • [31] Characteristics of CO2 capture system using KIERSOL in the LNG flue gas
    Yoon, Yeo Il
    Kim, Young Eun
    Nam, Sung Chan
    Jeong, Soon Kwan
    Park, Sung Youl
    Youn, Min Hye
    Park, Ki Tae
    12TH INTERNATIONAL CONFERENCE ON GREENHOUSE GAS CONTROL TECHNOLOGIES, GHGT-12, 2014, 63 : 1745 - 1750
  • [32] New Energy Efficient Processes and Improvements for Flue Gas CO2 Capture
    Tatsumi, Masahiko
    Yagi, Yasuyuki
    Kadono, Kouji
    Kaibara, Kazuhiko
    Iijima, Masaki
    Ohishi, Tsuyoshi
    Tanaka, Hiroshi
    Hirata, Takuya
    Mitchell, Ronald
    10TH INTERNATIONAL CONFERENCE ON GREENHOUSE GAS CONTROL TECHNOLOGIES, 2011, 4 : 1347 - 1352
  • [33] Capture of CO2 from flue gas via multiwalled carbon nanotubes
    Su, Fengsheng
    Lu, Chungsying
    Cnen, Wenfa
    Bai, Hsunling
    Hwang, Jyh Feng
    SCIENCE OF THE TOTAL ENVIRONMENT, 2009, 407 (08) : 3017 - 3023
  • [34] Bimetallic catalysts for CO2 capture and hydrogenation at simulated flue gas conditions
    Arellano-Trevino, Martha A.
    Kanani, Nisarg
    Jeong-Potter, Chae W.
    Farrauto, Robert J.
    CHEMICAL ENGINEERING JOURNAL, 2019, 375
  • [35] Sorbent design for CO2 capture under different flue gas conditions
    Pablo Marco-Lozar, Juan
    Kunowsky, Mirko
    Suarez-Garcia, Fabian
    Linares-Solano, Angel
    CARBON, 2014, 72 : 125 - 134
  • [36] Analysis of the Characteristics of Decompression Capture of CO2 in Flue Gas by Cryogenic Heat
    Umeda, Yoshito
    Yamashita, Hiroshi
    JOURNAL OF CHEMICAL ENGINEERING OF JAPAN, 2023, 56 (01)
  • [37] CO2 capture and separation from flue gas by spraying hydrate method
    Ma, Xu
    Teng, Yadong
    Liu, Jie
    Wang, Yulu
    Zhang, Peng
    Zhang, Lianhai
    Yao, Wanlong
    Zhan, Jing
    Wu, Qingbai
    Huagong Xuebao/CIESC Journal, 2024, 75 (05): : 2001 - 2016
  • [38] Recent developments on polymeric membranes for CO2 capture from flue gas
    Han, Yang
    Ho, W. S. Winston
    JOURNAL OF POLYMER ENGINEERING, 2020, 40 (06) : 529 - 542
  • [39] Oxidation of amines at absorber conditions for CO2 capture from flue gas
    Voice, Alexander K.
    Rochelle, Gary T.
    10TH INTERNATIONAL CONFERENCE ON GREENHOUSE GAS CONTROL TECHNOLOGIES, 2011, 4 : 171 - 178
  • [40] In situ CO2 capture and transformation into cyclic carbonates using flue gas
    Ma, Haiying
    Liu, Shujuan
    Wang, Hongli
    Li, Guomin
    Zhao, Kang
    Cui, Xinjiang
    Shi, Feng
    GREEN CHEMISTRY, 2023, 25 (06) : 2293 - 2298