Mesoporous TiO2 as the support of tetraethylenepentamine for CO2 capture fromsimulated flue gas

被引:14
|
作者
Song, Fujiao [1 ]
Zhong, Qin [1 ]
Ding, Jie [1 ]
Zhao, Yunxia [1 ]
Bu, Yunfei [1 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Chem Engn, Nanjing 210094, Jiangsu, Peoples R China
来源
RSC ADVANCES | 2013年 / 3卷 / 45期
关键词
SOL-GEL METHOD; PHOTOCATALYTIC ACTIVITY; HYDROTHERMAL SYNTHESIS; CARBON-DIOXIDE; MOLECULAR-SIEVE; IONIC LIQUIDS; ADSORPTION; TITANIA; PERFORMANCE; ABSORPTION;
D O I
10.1039/c3ra42998a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Mesoporous TiO2 (MT) was prepared by a hydrothermal method and used as the supporting material for the immobilization of tetraethylenepentamine (TEPA) to develop a new type of adsorbent for CO2 capture from flue gas. The CO2 adsorption capacity increases with the increase of the TEPA loading amounts. With the maximum TEPA loading of 31 wt% onto the MT sorbent, the maximum CO2 adsorption capacity reached 2.52 mmol of CO2 g(-1) of sorbent. In the presence of an appropriate amount of water vapor, the formation of bicarbonate and hydroxylated surface on TiO2 can improve CO2 adsorption capacity from 2.64 to 2.91 mmol g(-1). However, an excess of water vapor leads to a decrease in the CO2 adsorption capacity from 2.91 to 2.65 mmol g(-1), probably attributed to the adsorption competition between water and CO2. The absorption/regeneration cycle was repeated and the CO2 adsorption capacity decreased from 2.52 to 2.41 mmol g(-1) over 5 cycles, almost completely maintained its original CO2 adsorption capacity. In addition, the effect of long-term storage on CO2 adsorption capacity is studied. After approximately one year of storage, the CO2 capacity of the MT-TEPA-31 decreased by 28% compared with the fresh sample.
引用
下载
收藏
页码:23785 / 23790
页数:6
相关论文
共 50 条
  • [21] Effect of Flue Gas Composition on the Design of a CO2 Capture Plant
    Gabriela Romero-Garcia, Ana
    Ramirez-Corona, Nelly
    Sanchez-Ramirez, Eduardo
    Alcocer-Garcia, Heriberto
    Gabriel Segovia-Hernandez, Juan
    30TH EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING, PTS A-C, 2020, 48 : 835 - 840
  • [22] Amino acid salts for CO2 capture at flue gas temperatures
    Wei, Steven Chiao-Chien
    Puxty, Graeme
    Feron, Paul
    GHGT-11, 2013, 37 : 485 - 493
  • [23] Tetraethylenepentamine modified protonated titanate nanotubes for CO2 capture
    Guo, Liping
    Hu, Xin
    Hu, Gengshen
    Chen, Jie
    Li, Zhiming
    Dai, Wei
    Dacosta, Herbert F. M.
    Fan, Maohong
    FUEL PROCESSING TECHNOLOGY, 2015, 138 : 663 - 669
  • [24] CO2 Capture by Injection of Flue Gas or CO2-N2 Mixtures into Hydrate Reservoirs: Dependence of CO2 Capture Efficiency on Gas Hydrate Reservoir Conditions
    Hassanpouryouzband, Aliakbar
    Yang, Jinhai
    Tohidi, Bahman
    Chuvilin, Evgeny
    Istomin, Vladimir
    Bukhanov, Boris
    Cheremisin, Alexey
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2018, 52 (07) : 4324 - 4330
  • [25] Natural gas oxy-combustion with flue gas recycling for CO2 capture
    Bensakhria, Ammar
    Leturia, Mikel
    PRES 2010: 13TH INTERNATIONAL CONFERENCE ON PROCESS INTEGRATION, MODELLING AND OPTIMISATION FOR ENERGY SAVING AND POLLUTION REDUCTION, 2010, 21 : 637 - 642
  • [26] CO2 methanation on Co/TiO2 catalyst: Effects of Y on the support
    Qin, Zuzeng
    Wang, Xiaodi
    Dong, Lihui
    Su, Tongming
    Li, Bin
    Zhou, Yuwen
    Jiang, Yuexiu
    Luo, Xuan
    Ji, Hongbing
    CHEMICAL ENGINEERING SCIENCE, 2019, 210
  • [27] Adsorption of CO2 from Simulated Flue Gas on Pentaethylenehexamine-Loaded Mesoporous Silica Support Adsorbent
    Wei, Li
    Gao, Zhengming
    Jing, Yu
    Wang, Yundong
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2013, 52 (42) : 14965 - 14974
  • [28] Poly(allylamine)-Mesoporous Silica Composite Materials for CO2 Capture from Simulated Flue Gas or Ambient Air
    Chaikittisilp, Watcharop
    Khunsupat, Ratayakorn
    Chen, Thomas T.
    Jones, Christopher W.
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2011, 50 (24) : 14203 - 14210
  • [29] Application of carbon fibre composites to CO2 capture from flue gas
    Thiruvenkatachari, Ramesh
    Su, Shi
    Yu, Xin Xiang
    Bae, Jun-Seok
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2013, 13 : 191 - 200
  • [30] Research progress on solid adsorption materials for CO2 capture in flue gas
    Mu, Jiaqi
    Fang, Zhenhua
    Zhu, Hongbao
    Xie, Donglei
    Liu, Xiaohua
    Jingxi Huagong/Fine Chemicals, 2023, 40 (09): : 1857 - 1866