Parallel indexing technique for spatio-temporal data

被引:12
|
作者
He, Zhenwen [1 ,2 ]
Kraak, Menno-Jan [2 ]
Huisman, Otto [2 ]
Ma, Xiaogang [2 ]
Xiao, Jing [2 ]
机构
[1] China Univ Geosci, Sch Comp, Wuhan 430074, Peoples R China
[2] Univ Twente, Fac Geoinformat Sci & Earth Observat, NL-7514 AE Enschede, Netherlands
基金
国家高技术研究发展计划(863计划); 中国国家自然科学基金;
关键词
Spatio-temporal index; Parallel index; R-Tree; Interval; MOVING-OBJECTS; EFFICIENT; TREE; QUERIES; TRAJECTORIES;
D O I
10.1016/j.isprsjprs.2013.01.014
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
The requirements for efficient access and management of massive multi-dimensional spatio-temporal data in geographical information system and its applications are well recognized and researched. The most popular spatio-temporal access method is the R-Tree and its variants. However, it is difficult to use them for parallel access to multi-dimensional spatio-temporal data because R-Trees, and variants thereof, are in hierarchical structures which have severe overlapping problems in high dimensional space. We extended a two-dimensional interval space representation of intervals to a multi-dimensional parallel space, and present a set of formulae to transform spatio-temporal queries into parallel interval set operations. This transformation reduces problems of multi-dimensional object relationships to simpler two-dimensional spatial intersection problems. Experimental results show that the new parallel approach presented in this paper has superior range query performance than R*-trees for handling multi-dimensional spatio-temporal data and multi-dimensional interval data. When the number of CPU cores is larger than that of the space dimensions, the insertion performance of this new approach is also superior to R*-trees. The proposed approach provides a potential parallel indexing solution for fast data retrieval of massive four-dimensional or higher dimensional spatio-temporal data. (C) 2013 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS) Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:116 / 128
页数:13
相关论文
共 50 条
  • [31] Spatio-Temporal Data Reduction Technique in WVSN for Smart Agriculture
    Koteich, Jana
    Salim, Christian
    Mitton, Nathalie
    [J]. 2022 18TH INTERNATIONAL CONFERENCE ON WIRELESS AND MOBILE COMPUTING, NETWORKING AND COMMUNICATIONS (WIMOB), 2022,
  • [32] Statistics for Spatio-Temporal Data
    Mills, Jeff
    [J]. JOURNAL OF REGIONAL SCIENCE, 2012, 52 (03) : 512 - 513
  • [33] Mining spatio-temporal data
    Gennady Andrienko
    Donato Malerba
    Michael May
    Maguelonne Teisseire
    [J]. Journal of Intelligent Information Systems, 2006, 27 : 187 - 190
  • [34] A Spatio-Temporal Indexing Structure for Efficient Retrieval and Manipulation of Discretely Changing Spatial Data
    Halaoui, H. F.
    [J]. JOURNAL OF SPATIAL SCIENCE, 2008, 53 (02) : 1 - 12
  • [35] Cymo: A Storage Model with Query-Aware Indexing for Spatio-Temporal Big Data
    Guo, Yang
    Shao, Zili
    [J]. 2022 IEEE 42ND INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING SYSTEMS (ICDCS 2022), 2022, : 122 - 132
  • [36] Spatio-Temporal Data Construction
    Le, Hai Ha
    [J]. ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2013, 2 (03): : 837 - 853
  • [37] Mining spatio-temporal data
    Andrienko, Gennady
    Malerba, Donato
    May, Michael
    Teisseire, Maguelonne
    [J]. JOURNAL OF INTELLIGENT INFORMATION SYSTEMS, 2006, 27 (03) : 187 - 190
  • [38] On Robustness for Spatio-Temporal Data
    Garcia-Perez, Alfonso
    [J]. MATHEMATICS, 2022, 10 (10)
  • [39] Statistics for Spatio-Temporal Data
    Haining, Robert P.
    [J]. GEOGRAPHICAL ANALYSIS, 2012, 44 (04) : 411 - 412
  • [40] STORM: Spatio-Temporal Online Reasoning and Management of Large Spatio-Temporal Data
    Christensen, Robert
    Wang, Lu
    Li, Feifei
    Yi, Ke
    Tang, Jun
    Villa, Natalee
    [J]. SIGMOD'15: PROCEEDINGS OF THE 2015 ACM SIGMOD INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, 2015, : 1111 - 1116