Heinz mean curvature estimates in warped product spaces M x e N

被引:0
|
作者
Salavessa, Isabel M. C. [1 ]
机构
[1] Univ Lisbon, Inst Super Tecn, Ctr Phys & Engn Adv Mat CeFEMA, Edificio Ciencia,Piso 3,Ave Rovisco Pais, P-1049001 Lisbon, Portugal
关键词
Heinz estimate; Mean curvature; Warped product; Isoperimetric inequality; Higher codimension; Calibration; EIGENVALUE COMPARISON-THEOREMS; MANIFOLDS; GRAPHS;
D O I
10.1007/s10455-017-9577-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
If a graph submanifold (x, f(x)) of a Riemannian warped product space is immersed with parallel mean curvature H, then we obtain a Heinz-type estimation of the mean curvature. Namely, on each compact domain D of M, holds, where and are the -weighted area and volume, respectively. In particular, if (M, g) has zero-weighted Cheeger constant, a concept recently introduced by Impera et al. (Height estimates for killing graphs. arXiv:1612.012571612.01257" TargetType=, 2016). This generalizes the known cases or . We also conclude minimality using a closed calibration, assuming is complete where , and for some constants , and , , , and holds when , where r(x) is the distance function on from some fixed point. Both results rely on expressing the squared norm of the mean curvature as a weighted divergence of a suitable vector field.
引用
收藏
页码:265 / 281
页数:17
相关论文
共 50 条
  • [31] Scalar curvature estimates of constant mean curvature hypersurfaces in locally symmetric spaces
    de Lima, Eudes L.
    de Lima, Henrique F.
    dos Santos, Fabio R.
    Velasquez, Marco A. L.
    SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES, 2019, 13 (01): : 320 - 341
  • [32] On the curvature of warped product Finsler spaces and the Laplacian of the Sasaki-Finsler metrics
    Hushmandi, Ataabak Baagherzadeh
    Rezaii, Morteza M.
    JOURNAL OF GEOMETRY AND PHYSICS, 2012, 62 (10) : 2077 - 2098
  • [33] Stability of constant mean curvature surfaces in three-dimensional warped product manifolds
    Silva Neto, Gregorio
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2019, 56 (01) : 57 - 86
  • [34] Stability of constant mean curvature surfaces in three-dimensional warped product manifolds
    Gregório Silva Neto
    Annals of Global Analysis and Geometry, 2019, 56 : 57 - 86
  • [35] Submanifolds with Parallel Mean Curvature Vector Field in Product Spaces
    Hou Z.H.
    Qiu W.-H.
    Vietnam Journal of Mathematics, 2015, 43 (4) : 705 - 723
  • [36] On complete submanifolds with parallel normalized mean curvature in product spaces
    dos Santos, Fabio R.
    da Silva, Sylvia F.
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2022, 152 (02) : 331 - 355
  • [37] HEIGHT ESTIMATES FOR SURFACES WITH POSITIVE CONSTANT MEAN CURVATURE IN M2 x R
    Aledo, Juan A.
    Espinar, Jose M.
    Galvez, Jose A.
    ILLINOIS JOURNAL OF MATHEMATICS, 2008, 52 (01) : 203 - 211
  • [38] On the stochastically complete hypersurfaces in the product spaces M n ( κ ) x R
    dos Santos, Fabio R.
    Cruz, Joicy P.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2025, 546 (02)
  • [39] Rigidity of complete hypersurfaces in warped product spaces via higher order mean curvatures
    Aquino C.P.
    Araújo J.G.
    de Lima H.F.
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2016, 57 (2): : 391 - 405
  • [40] A classification result for helix surfaces with parallel mean curvature in product spaces
    Fetcu, Dorel
    ARKIV FOR MATEMATIK, 2015, 53 (02): : 249 - 258